精英家教网 > 高中数学 > 题目详情
某商品一件的成本为30元,在某段时间内,若以每件x元出售,可卖出(200-x)件,当每件商品的定价为
115
115
元时,利润最大.
分析:本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值.
解答:解:利润为S(x)=(x-30)(200-x)
=-x2+230x-6000,S′(x)=-2x+230,
由S′(x)=0得x=115,这时利润达到最大.
故答案为:115.
点评:本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a元(1≤a≤3)的管理费,预计当每件商品的售价为x元(8≤x≤9)时,一年的销售量为(10-x)2万件.
(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);
(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值M(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a(1≤a≤3)元的管理费,预计当每件商品的售价为x(7≤x≤9)元时,一年的销售量为(10-x)2万件.
(Ⅰ)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);
(Ⅱ)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x万件,需另投入流动成本为W(x)万元,在年产量不足8万件时,W(x)=
1
3
x2+x
(万元).在年产量不小于8万件时,W(x)=6x+
100
x
-38
(万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.
(I)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;
(注:年利润=年销售收入-固定成本-流动成本)
(II)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a元(1≤a≤3)的管理费,预计当每件商品的售价为元(8≤x≤9)时,一年的销售量为(10-x)2万件.(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x)(销售一件商品获得的利润lx-(a+4));(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值M(a).

查看答案和解析>>

科目:高中数学 来源:福建省高考真题 题型:解答题

某分公司销售某种商品,每件商品的成本为3元,并且每件商品需向总店交a元(3≤a≤5)的管理费,预计当每件商品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件。
(1)求分公司一年的利润L(万元)与每件商品的售价x的函数关系式L(x);
(2)当每件商品的售价为多少元时,该分公司一年的利润L最大,并求出L的最大值M(a)。

查看答案和解析>>

同步练习册答案