【题目】已知正项等比数列
是单调递增数列,且
与
的等差中项为
,
与
的等比中项为16,
.
(Ⅰ)求数列
和
的通项公式;
(Ⅱ)令
,
,求数列
的前
项和
.
科目:高中数学 来源: 题型:
【题目】某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨.销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.
(1)列出甲、乙两种产品满足的关系式,并画出相应的平面区域;
(2)在一个生产周期内该企业生产甲、乙两种产品各多少吨时可获得利润最大,最大利润是多少?
(用线性规划求解要画出规范的图形及具体的解答过程)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中是真命题的个数是( )
(1)垂直于同一条直线的两条直线互相平行
(2)与同一个平面夹角相等的两条直线互相平行
(3)平行于同一个平面的两条直线互相平行
(4)两条直线能确定一个平面
(5)垂直于同一个平面的两个平面平行
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4.
![]()
求椭圆E的方程;
若A是椭圆E的左顶点,经过左焦点F的直线l与椭圆E交于C,D两点,求
与
为坐标原点
的面积之差绝对值的最大值.
已知椭圆E上点
处的切线方程为
,T为切点
若P是直线
上任意一点,从P向椭圆E作切线,切点分别为N,M,求证:直线MN恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学对高三年级进行身高统计,测量随机抽取的20名学生的身高,其频率分布直方图如下(单位:cm)
![]()
(1)根据频率分布直方图,求出这20名学生身高中位数的估计值和平均数的估计值.
(2)在身高为140—160的学生中任选2个,求至少有一人的身高在150—160之间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学利用周末组织教职员工进行了一次秋季登山健身的活动,有
个人参加。现将所有参加者按年龄情况分为
等七组.其频率分布直方图如图所示,已知
这组的参加者是6人。
![]()
(I)根据此频率分布直方图求
;
(II)组织者从
这组的参加者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的人数为
,求
的分布列、均值及方差.
(Ⅲ)已知
和
这两组各有2名数学教师。现从这两个组中各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人中恰有1名数学老师的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数
,下列说法正确的是______(填上所有正确命题序号).(1)
是
的极大值点 ;(2)函数
有且只有1个零点;(3)存在正实数
,使得
恒成立 ;(4)对任意两个正实数
,且
,若
,则
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
,
.
(1)当
时,求函数
的极值;
(2)若在区间
上存在不相等的实数
,使得
成立,求
的取值范围;
(3)设
的图象为
,
的图象为
,若直线
与
分别交于
,问是否存在整数
,使
在
处的切线与
在
处的切线互相平行,若存在,求出
的所有值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com