精英家教网 > 高中数学 > 题目详情
若对满足条件3x+3y+8=2xy(x>0,y>0)的任意x、y,(x+y)2-a(x+y)+16≥0恒成立,则实数a的取值范围是(  )
分析:利用基本不等式把已知的等式变形得到关于x+y的不等式,求解不等式得到x+y的范围,换元后由,(x+y)2-a(x+y)+16≥0恒成立分类讨论求解a的取值范围.
解答:解:由3x+3y+8=2xy,得3(x+y)+8=2xy≤
(x+y)2
2

即(x+y)2-6(x+y)-16≥0,解得-2≤x+y≤8.
令t=x+y,则-2≤t≤8.
则问题变成了t2-at+16≥0对t∈[-2,8]恒成立,
若△=(-a)2-4×16≤0,即-8≤a≤8,不等式显然成立,
若△>0,即a<-8或a>8,
a
2
>8
82-8a+16≥0
①或
a
2
<-2
(-2)2+2a+16≥0

解得8<a≤10或a≤-8.
综上,实数a的取值范围是(-∞,10].
故选C.
点评:本题考查了不等式中含参数的范围问题,考查了分类讨论的数学思想方法,训练了“三个二次”结合求解三叔的范围问题,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x),如果存在给定的实数对(a,b),使得f(a+x)•f(a-x)=b恒成立,则称f(x)为“S-函数”.
(1)判断函数f1(x)=x,f2(x)=3x是否是“S-函数”;
(2)若f3(x)=tanx是一个“S-函数”,求出所有满足条件的有序实数对(a,b);
(3)若定义域为R的函数f(x)是“S-函数”,且存在满足条件的有序实数对(0,1)和(1,4),当x∈[0,1]时,f(x)的值域为[1,2],求当x∈[-2012,2012]时函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的函数f(x)同时满足下列三个条件:
①对任意实数a,b均有f(a+b)=f(a)+f(b)成立;
f(4)=
1
4

③当x>0时,都有f(x)>0成立.
(1)求f(0),f(8)的值;
(2)求证:f(x)为R上的增函数;
(3)求解关于x的不等式f(x-3)-f(3x-5)≤
1
2

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省黄冈中学高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数f(x),如果存在给定的实数对(a,b),使得f(a+x)•f(a-x)=b恒成立,则称f(x)为“S-函数”.
(1)判断函数f1(x)=x,f2(x)=3x是否是“S-函数”;
(2)若f3(x)=tanx是一个“S-函数”,求出所有满足条件的有序实数对(a,b);
(3)若定义域为R的函数f(x)是“S-函数”,且存在满足条件的有序实数对(0,1)和(1,4),当x∈[0,1]时,f(x)的值域为[1,2],求当x∈[-2012,2012]时函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:2011年上海市浦东新区高考数学一模试卷(理科)(解析版) 题型:解答题

已知函数f(x),如果存在给定的实数对(a,b),使得f(a+x)•f(a-x)=b恒成立,则称f(x)为“S-函数”.
(1)判断函数f1(x)=x,f2(x)=3x是否是“S-函数”;
(2)若f3(x)=tanx是一个“S-函数”,求出所有满足条件的有序实数对(a,b);
(3)若定义域为R的函数f(x)是“S-函数”,且存在满足条件的有序实数对(0,1)和(1,4),当x∈[0,1]时,f(x)的值域为[1,2],求当x∈[-2012,2012]时函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:2011年上海市浦东新区高考数学一模试卷(文科)(解析版) 题型:解答题

已知函数f(x),如果存在给定的实数对(a,b),使得f(a+x)•f(a-x)=b恒成立,则称f(x)为“S-函数”.
(1)判断函数f1(x)=x,f2(x)=3x是否是“S-函数”;
(2)若f3(x)=tanx是一个“S-函数”,求出所有满足条件的有序实数对(a,b);
(3)若定义域为R的函数f(x)是“S-函数”,且存在满足条件的有序实数对(0,1)和(1,4),当x∈[0,1]时,f(x)的值域为[1,2],求当x∈[-2012,2012]时函数f(x)的值域.

查看答案和解析>>

同步练习册答案