【题目】某工厂修建一个长方体无盖蓄水池,其容积为4 800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米.
(1)求底面积,并用含x的表达式表示池壁面积;
(2)怎样设计水池能使总造价最低?最低造价是多少?
科目:高中数学 来源: 题型:
【题目】已知椭圆
过点
.
(1)求椭圆
的方程,并求其离心率;
(2)过点
作
轴的垂线
,设点
为第四象限内一点且在椭圆
上(点
不在直线
上),点
关于
的对称点为
,直线
与
交于另一点
.设
为原点,判断直线
与直线
的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
,圆
.以原点
为极点,
轴的正半轴为极轴建立极坐标系.
(1)求
的极坐标方程;
(2)若直线
的极坐标方程为
,设
与
的交点为
、
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.
|
|
|
|
|
|
企业数 | 2 | 24 | 53 | 14 | 7 |
(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;
(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)
附:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十八大以来,我国新能源产业迅速发展.以下是近几年某新能源产品的年销售量数据:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代码 | 1 | 2 | 3 | 4 | 5 |
新能源产品年销售 | 1.6 | 6.2 | 17.7 | 33.1 | 55.6 |
(1)请画出上表中年份代码
与年销量
的数据对应的散点图,并根据散点图判断.
与
中哪一个更适宜作为年销售量
关于年份代码
的回归方程类型;
(2)根据(Ⅰ)的判断结果及表中数据,建立
关于
的回归方程,并预测2019年某新能源产品的销售量(精确到0.01).
参考公式:
,
.
参考数据:
,
,
,
,
,
,
,其中
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】总体由编号为01,02,03,
,49,50的50个个体组成,利用随机数表(以下选取了随机数表中的第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为( )
78 16 65 72 08 02 63 14 07 02 43 69 69 38 74 |
32 04 94 23 49 55 80 20 36 35 48 69 97 28 01 |
A. 05 B. 09 C. 07 D. 20
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(1)若函数
的图像与
轴无交点,求
的取值范围;
(2)若方程
在区间
上存在实根,求
的取值范围;
(3)设函数
,
,当
时若对任意的
,总存在
,使得
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三名学生一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立,根据甲、乙、丙三名学生的平均成绩分析,甲、乙、丙3名学生能通过笔试的概率分别是0.6,0.5,0.4,能通过面试的概率分别是0.6,0.6,0.75.
(1)求甲、乙、丙三名学生中恰有一人通过笔试的概率;
(2)求经过两次考试后,至少有一人被该高校预录取的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com