【题目】函数
.
(1)当
时,求
在区间
上的最值;
(2)讨论
的单调性;
(3)当
时,有
恒成立,求
的取值范围.
【答案】(1)
(2)当
时,
在
递增;当
时,
在
递增,在
上递减.当
时,
在
递减.(3)![]()
【解析】试题分析:(1)
在
的最值只能在
和区间的两个端点取到,因此,通过算出上述点并比较其函数值可得函数
在
的最值;(2)算出
,对
的取值范围分情况讨论即可;(3)根据(2)中得到的单调性化简不等式,从而求解不等式,解得
的取值范围.
试题解析:(1)当
时,
,∴
,
∵
的定义域为
,∴由
,得
.……………………2分
∴
在区间
上的最值只可能在
取到,
而
,
,
,……4分
(2)
,
,
①当
,即
时,
,∴
在
上单调递减;……5分
②当
时,
,∴
在
上单调递增;…………………………6分
③当
时,由
得
,∴
或
(舍去)
∴
在
上单调递增,在
上单调递减;……………………8分
综上,当
时,
在
单调递增;
当
时,
在
单调递增,在
上单调递减.
当
时,
在
单调递减;
(3)由(2)知,当
时,
,
即原不等式等价于
,…………………………12分
即
,整理得
,
∴
,………………13分
又∵
,∴
的取值范围为
.……………………14分
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax2-a-lnx,其中a∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)当
时,
恒成立,求a的取值范围.(其中,e=2.718…为自然对数的底数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
其中
,若函数
,且它的最小正周期为
.
(普通中学只做1,2问)
(1)求
的值,并求出函数
的单调递增区间;
(2)当
(其中
)时,记函数
的最大值与最小值分
别为
与
,设
,求函数
的解
析式;
(3)在第(2)问的前提下,已知函数
,
,若对于任意
,
,总存在
,使得![]()
成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
,
,点
在椭圆
上.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)是否存在斜率为2的直线
,使得当直线
与椭圆
有两个不同交点
、
时,能在直线
上找到一点
,在椭圆
上找到一点
,满足
?若存在,求出直线
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在原点,焦点在
轴,焦距为2,且长轴长是短轴长的
倍.
(1)求椭圆
的标准方程;
(2)设
,过椭圆
左焦点
的直线
交
于
、
两点,若对满足条件的任意直线
,不等式
(
)恒成立,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分
沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时。如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的
(细管长度忽略不计).
![]()
(1)如果该沙漏每秒钟漏下0.02cm3的沙,则该沙漏的一个沙时为多少秒(精确到1秒)?
(2)细沙全部漏入下部后,恰好堆成个一盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度(精确到0.1cm).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:
组号 | 第一组 | 第二组 | 第三组 | 第四组 | 第五组 |
分组 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;
(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为1的正方体ABCD—A1B1C1D1中,
M、N分别是AB1、BC1的中点.
(Ⅰ)求证:直线MN//平面ABCD.
(Ⅱ)求B1到平面A1BC1的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com