【题目】已知函数f(x)=sin(ωx+φ)其中ω>0,|φ|<
.
(1)若cos
cosφ﹣sin
sinφ=0.求φ的值;
(2)在(1)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于
,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象象左平移m个单位所对应的函数是偶函数.
【答案】
(1)解:由
得 ![]()
即
又
,∴ ![]()
(2)解法一:由(I)得,
依题意,
又
,故ω=3,∴ ![]()
函数f(x)的图象向左平移m个单位后所对应的函数为
g(x)是偶函数当且仅当
即
从而,最小正实数 ![]()
解法二:由(I)得,
,依题意,
又
,故ω=3,∴ ![]()
函数f(x)的图象向左平移m个单位后所对应的函数为
,g(x)是偶函数当且仅当g(﹣x)=g(x)对x∈R恒成立
亦即
对x∈R恒成立.∴
= ![]()
即
对x∈R恒成立.∴ ![]()
故
∴
从而,最小正实数 ![]()
【解析】1、由两角和差的余弦公式,
,变形得到,
.
2、由
,
得到
.函数f(x)的图象向左平移m个单位后所对应的函数解析式,再根据偶函数的定义整理得到
,由余弦函数的最值,整体思想代入即可求得m的值。
【考点精析】解答此题的关键在于理解两角和与差的正弦公式的相关知识,掌握两角和与差的正弦公式:
.
科目:高中数学 来源: 题型:
【题目】已知a≥0,函数f(x)=(x2﹣2ax)ex , 若f(x)在[﹣1,1]上是单调减函数,则a的取值范围是( )
A.0<a< ![]()
B.
<a< ![]()
C.a≥ ![]()
D.0<a< ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x﹣
﹣2alnx(a∈R) (Ⅰ)若函数f(x)在x=2时取极值,求实数a的值;
(Ⅱ)若f(x)≥0对任意x∈[1,+∞)恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1 , x2 , x3 , x4 , 则x1+x2+x3+x4= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a∈R,函数f(x)=log2(
+a).
(1)当a=5时,解不等式f(x)>0;
(2)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a的取值范围.
(3)设a>0,若对任意t∈[
,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为2的正方体ABCD﹣A1B1C1D1中,P为底面正方形ABCD内一个动点,Q为棱AA1上的一个动点,若|PQ|=2,则PQ的中点M的轨迹所形成图形的面积是( )
A.![]()
B.![]()
C.3
D.4π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}、{bn}都是公差为1的等差数列,其首项分别为a1、b1 , 且a1+b1=5,a1 , b1∈N* , 设cn=a
,则数列{cn}的前10项和等于( )
A.55
B.70
C.85
D.100
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com