(本题13分)设椭圆
的左右焦点分别为
,
,上顶点为
,过点
与
垂直的直线交
轴负半轴于
点,且
是
的中点.
![]()
(1)求椭圆的离心率;
(2)若过点
的圆恰好与直线
相切,求椭圆
的方程;
(3)在(2)的条件下过右焦点
作斜率为
的直线
与椭圆相交于
两点,在
轴上是否存在点
使得以
为邻边的平行四边形为菱形,如果存在,求出
的取值范围,如果不存在,说明理由。
(1)
;(2)
;(3)存在满足题意的P,且
。
【解析】
试题分析:(1)由
得
,所以
……………………………3分
(2)由外接圆圆心
,半径为
所以
,解得![]()
所以椭圆方程为
……………………………6分
(3)
,设直线
,设![]()
联立
消y得![]()
,
……………………………7分
设
的中点
,
,![]()
由题意,
,所以
,(由已知
)
化简得
, ……………………………11分
所以
所以存在满足题意的P,且
。 ……………………………13分
考点:椭圆啊标准方程;椭圆的简单性质;直线与圆的位置关系;直线与椭圆的综合应用。
点评:本题考查直线和圆锥曲线的位置关系的综合运用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.
科目:高中数学 来源:2011-2012学年陕西省高三月考(七)文科数学试卷 题型:解答题
(本题满分13分) 已知椭圆
(
)过点
(0,2),离心率
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线
与椭圆相交于
两点,求
.
查看答案和解析>>
科目:高中数学 来源:2010年黑龙江省高二上学期期中考试数学理卷 题型:解答题
(本题13分)
设椭圆
:
的左、右焦点分别为
,上顶点为
,过点
与
垂直的直线交
轴负半轴于点
,且
.
(Ⅰ)求椭圆
的离心率;
(Ⅱ)若过
、
、
三点的圆恰好与直线
:
相切,求椭圆
的方程;
(III)在(Ⅱ)的条件下,过右焦点
作斜率为
的直线
与椭圆
交于
、
两点,在
轴上是否存在点
使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围,如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题13分) 设椭圆的对称中心为坐标原点,其中一个顶点为
,右焦点
与点
的距离为
.
(1)求椭圆的方程;
(2)是否存在经过点
的直线
,使直线
与椭圆相交于不同的两点
满足
?若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分13分)
设椭圆
:
的左右焦点分别是
,
是椭圆上一点,且
,原点
到直线
的距离为
,且椭圆
上的点到
的最小距离是
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若圆
的切线
与椭圆C相交于
两点,求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com