【题目】已知函数
.
(1)求函数
在点
处的切线方程;
(2)求函数
在
上的值域;
(3)若存在
,使得
成立,求
的最大值.(其中自然常数
)
【答案】(1)
(2)
(3)
的最大值为6.
【解析】
)(1)对
求导得到
,然后代入切点横坐标,得到斜率,点斜式写出切线方程,整理得答案;(2)利用导数判断出
的单调性,根据单调性求出其最小值,并比较在两个端点时的函数值,得到最大值,从而得到答案;(3)由(2)可得
,要使
成立,且
的值最大,则
,
…
的值应最小,即
,
,从而得到
,从而得到
的最大值为
.
解:(1)
,
∴
,又
,
∴
,即
为所求切线的方程.
(2)![]()
令
,得
(舍去负根)
所以
时,
,
单调递减,
时,
,
单调递增.
故
,
又因为
,
,
故
,
故
时,
.
(3)由(2)知,
时,
.
所以有![]()
而要使
成立,且
的值最大,
则
,
…
每个的函数值应最小,
即,即
,
,
从而得到
,
所以
,
所以
的最大值为
.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知曲线
的参数方程为
(
为参数),以坐标原点
为极点,以
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)设点
分别为曲线
与曲线
上的任意一点,求
的最大值;
(2)设直线
(
为参数)与曲线
交于
两点,且
,求直线
的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学研究曲线
的性质,得到如下结论:①
的取值范围是
;②曲线
是轴对称图形;③曲线
上的点到坐标原点的距离的最小值为
. 其中正确的结论序号为( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震释放出的能量
(单位:焦耳)与地震里氏震级
之间的关系为
.
(1)已知地震等级划分为里氏
级,根据等级范围又分为三种类型,其中小于
级的为“小地震”,介于
级到
级之间的为“有感地震”,大于
级的为“破坏性地震”若某次地震释放能量约
焦耳,试确定该次地震的类型;
(2)2008年汶川地震为里氏
级,2011年日本地震为里氏
级,问:2011年日本地震所释放的能量是2008年汶川地震所释放的能量的多少倍? (取
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的焦点分别为
,
,椭圆
的离心率为
,且经过点
,经过
,
作平行直线
,
,交椭圆
于两点
,
和两点
,
.
(1)求
的方程;
(2)求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,以
为极点,
轴的非负半轴为极轴,建立极坐标系,曲线
的极坐标方程为
,直线
的参数方程为
为参数
,直线
与曲线
分别交于
两点.
(1)若点
的极坐标为
,求
的值;
(2)求曲线
的内接矩形周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017高考新课标Ⅲ,理19)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
![]()
(1)证明:平面ACD⊥平面ABC;
(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com