精英家教网 > 高中数学 > 题目详情
已知f(x+y)=f(x)+f(y),且f(1)=2,则f(1)+f(2)+…+f(n)不能等于(  )
分析:根据题意,令x=n、y=1,证出f(n+1)-f(n)=2,得{f(n)}构成以2为首项、公差为2的等差数列.由等差数列通项公式算出f(n)=2n,进而得到{f(n)}前n项和等于n(n+1).由此再将各项和运算结果加以对照,可得本题答案.
解答:解:令x=n,y=1,得f(n+1)=f(n)+f(1)=f(n)+2,
∴f(n+1)-f(n)=2,
可得{f(n)}构成以f(1)=2为首项,公差为2的等差数列,
∴f(n)=2+(n-1)×2=2n,
因此,f(1)+f(2)+…+f(n)=
n[f(1)+f(n)]
2
=
n(2+2n)
2
=n(n+1)
对于A,由于f(1)+2f(1)+3f(1)+…+nf(1)
=f(1)(1+2+…+n)=2×
n(n+1)
2
=n(n+1),故A正确;
对于B,由于f(n)=2n,所以f[
n(n+1)
2
]
=2×
n(n+1)
2
=n(n+1),得B正确;
对于C,与求出的前n项和的通项一模一样,故C正确.
对于D,由于n(n+1)f(1)=2n(n+1),故D不正确.
故选:D
点评:本题考查了等差数列的通项公式、求和公式的知识,考查了采用赋值法解决抽象函数问题的方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x+y)=f(x)•f(y)对任意的实数x、y都成立,且f(1)=2,则
f(1)
f(0)
+
f(2)
f(1)
+
f(3)
f(2)
+…+
f(2005)
f(2004)
+
f(2006)
f(2005)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x+y)=f(x)f(y)对任意的非负实数x,y都成立,且f(1)=1,则
f(1)
f(0)
+
f(2)
f(1)
+
f(3)
f(2)
+
f(4)
f(3)
+…+
f(2013)
f(2012)
=
2013
2013

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x+y)=f(x)-f(y)对于任意实数x都成立,在区间[0,+∞)单调递增,则满足f(2x-1)<f(
1
3
)
的x取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x+y)=f(x)f(y)对任意的非负实数x,y都成立,且f(1)=4,则
f(1)
f(0)
+
f(2)
f(1)
+
f(3)
f(2)
+
f(4)
f(3)
+…+
f(2010)
f(2009)
=
8040
8040

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x+y)=f(x)•f(y)对任意的实数x、y都成立,且f(1)=2,则
f(1)
f(0)
+
f(2)
f(1)
+
f(3)
f(2)
+…+
f(2005)
f(2004)
+
f(2006)
f(2005)
=______.

查看答案和解析>>

同步练习册答案