精英家教网 > 高中数学 > 题目详情

【题目】某社会机构为了调查对手机游戏的兴趣与年龄的关系,通过问卷调查,整理数据得如下列联表:

40岁以下

40岁以上

合计

很兴趣

30

15

45

无兴趣

20

35

55

合计

50

50

100

1)根据列联表,能否有的把握认为对手机游戏的兴趣程度与年龄有关?

2)若已经从岁以下的被调查者中用分层抽样的方式抽取了名,现从这名被调查者中随机选取名,求这名被调查者中恰有名对手机游戏无兴趣的概率.

0.100

0.050

0.010

0.001

2.706

3.84

6.635

10.828

(注:参考公式:,其中

【答案】1)没有的把握认为手机游戏的兴趣程度与年龄有关(2

【解析】

1)先根据卡方公式求卡方,再对照数据作判断;

2)先根据分层抽样确定各层抽取人数,再利用枚举法确定事件所包含事件数,最后根据古典概型概率公式求结果.

解:(1

∴没有的把握认为手机游戏的兴趣程度与年龄有关.

2)由题得岁以下的被调查者中用分层抽样的方式抽取的名人员中有名对手机游戏很兴趣,

设为;有名对手机游戏无兴趣,设为,从中随机选取名的基本事件有.

其中恰有个的有

∴这名被调查者中恰有名对手机游戏无兴趣的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 .

1)若的充分不必要条件,求实数的取值范围;

(2)若为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】闰月年指农历里有闰月的年份,比如2020年是闰月年,423日至522日为农历四月,523日至620日为农历闰四月.农历置闰月是为了农历年的平均长度接近回归年:农历年中的朔望月的平均长度为29.5306日,日,回归年的总长度为365.2422日,两者相差10.875日.因此,每19年相差206.625日,约等于7个朔望月.这样每19年就有7个闰月年.以下是1640年至1694年间所有的闰月年:

1640

1642

1645

1648

1651

1653

1656

1659

1661

1664

1667

1670

1672

1675

1678

1680

1 683

1686

1689

1691

1694

则从2020年至2049年,这30年间闰月年的个数为( )

A.10B.11C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F为椭圆的右焦点,点A为椭圆的右顶点.

1)求过点FA且和直线相切的圆C的方程;

2)过点F任作一条不与轴重合的直线,直线与椭圆交于PQ两点,直线PAQA分别与直线相交于点MN.试证明:以线段MN为直径的圆恒过点F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】目前,我国老年人口比例不断上升,造成日趋严峻的人口老龄化问题.20191012日,北京市老龄办、市老龄协会联合北京师范大学中国公益研究院发布《北京市老龄事业发展报告(2018)》,相关数据有如下图表.规定年龄在15岁至59岁为劳动年龄,具备劳动力,60岁及以上年龄为老年人,据统计,2018年底北京市每2.4名劳动力抚养1名老年人.

(Ⅰ)请根据上述图表计算北京市2018年户籍总人口数和北京市2018年的劳动力数;(保留两位小数)

(Ⅱ)从2014年起,北京市老龄人口与年份呈线性关系,比照2018年户籍老年人人口年龄构成,预计到2020年年底,北京市90以上老人达到多少人?(精确到1人)

(附:对于一组数据其回归直线的斜率和截距的最小二乘法估计分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性

(2)若函数在区间上存在两个不同零点求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P2P平台需要了解该平台投资者的大致年龄分布,发现其投资者年龄大多集中在区间岁之间,对区间岁的人群随机抽取20人进行了一次理财习惯调查,得到如下统计表和各年龄段人数频率分布直方图:

组数

分组

人数

第一组

2

第二组

a

第三组

5

第四组

4

第五组

3

第六组

2

1)求a的值并画出频率分布直方图;

2)从被调查的20人且年龄在岁中的投资者中随机抽取3人调查对其P2P理财观的看法活动,记这3人中来自于区间岁年龄段的人数为X,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心为,点是圆内一个定点,点是圆上任意一点,线段的垂直平分线与半径相交于点.

1)求动点的轨迹的方程;

2)给定点,设直线不经过点且与轨迹相交于两点,以线段为直径的圆过点.证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)为奇函数,且当x≥0时,fx)=excosx,则不等式f2x1+fx2)>0的解集为( )

A.(﹣1B.(﹣C.+∞D.1+∞

查看答案和解析>>

同步练习册答案