【题目】已知椭圆C:
过点
,离心率为
.
(1)求椭圆C的标准方程;
(2)设F1,F2分别为椭圆C的左、右焦点,过F2的直线l与椭圆C交于不同两点M,N,记△F1MN的内切圆的面积为S,求当S取最大值时直线l的方程,并求出最大值.
【答案】(1)
;(2)
,
.
【解析】
(1)运用离心率公式和点满足椭圆方程,解方程可得a,b,即可得到椭圆方程;
(2)设M(x1,y1),N(x2,y2),△F1MN的内切圆半径为r,运用等积法和韦达定理,弦长公式,结合基本不等式即可求得最大值.
(Ⅰ)由题意得
+
=1,
=
,a2=b2+c2,
解得a=2,b=
,c=1,
椭圆C的标准方程为
+
=1;
(Ⅱ)设M(x1,y1),N(x2,y2),△F1MN的内切圆半径为r,
则
=
(|MN|+|MF1|+|NF1|)r=
×8r=4r,
所以要使S取最大值,只需
最大,
则
=
|F1F2||y1﹣y2|=|y1﹣y2|,
设直线l的方程为x=ty+1,
将x=ty+1代入
+
=1;
可得(3t2+4)y2+6ty﹣9=0(*)
∵△>0恒成立,方程(*)恒有解,
y1+y2=
,y1y2=
,
=
=
,
记m=
(m≥1),
=
=
在[1,+∞)上递减,
当m=1即t=0时,(
)max=3,
此时l:x=1,Smax=
π.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为
,(a为参数)。以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为
,将C2逆时针旋转
以后得到曲线C3.
(1)写出C1与C3的极坐标方程;
(2)设C2与C3分别交曲线C1于A、B和C、D四点,求四边形ACBD面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,左、右焦点为
,点
在椭圆
上,且点
关于原点对称,直线
的斜率的乘积为
.
(1)求椭圆
的方程;
(2)已知直线
经过点
,且与椭圆
交于不同的两点
,若
,判断直线
的斜率是否为定值?若是,请求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
各项均为正数,Sn是数列
的前n项的和,对任意的
,都有
.数列
各项都是正整数,
,且数列
是等比数列.
(1) 证明:数列
是等差数列;
(2) 求数列
的通项公式
;
(3)求满足
的最小正整数n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数),曲线
的参数方为
(
为参数),以
为极点,
轴的非负半轴为极轴建立极坐标系.
(1)求直线
和曲线
的极坐标方程;
(2)设
,
,
为直线
与曲线
的两个交点,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的一个顶点与抛物线
的焦点重合,
,
分别是椭圆
的左、右焦点,离心率
,过椭圆
右焦点
的直线
与椭圆
交于
,
两点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)是否存在直线
,使得
,若存在,求出直线
的方程;若不存在,说明理由;
(Ⅲ)设点
是一个动点,若直线
的斜率存在,且
为
中点,
,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com