精英家教网 > 高中数学 > 题目详情

【题目】为迎接2022年北京冬季奥运会,普及冬奥知识,某校开展了冰雪答题王冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:,得到如图所示的频率分布直方图.

1)求的值;

2)估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);

3)在抽取的100名学生中,规定:比赛成绩不低于80分为优秀,比赛成绩低于80分为非优秀.请将下面的2×2列联表补充完整,并判断是否有99.9%的把握认为比赛成绩是否优秀与性别有关

优秀

非优秀

合计

男生

40

女生

50

合计

100

参考公式及数据:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1274 3)见解析,没有的把握认为比赛成绩是否优秀与性别有关

【解析】

1)根据各小矩形面积之和为1,即可解方程求出的值;

2)由频率分布直方图可知,平均成绩为各小矩形的面积与各底边中点值的乘积之和,即可求出;

3)根据题意填写列联表,计算的观测值,对照临界值即可得出结论.

1)由题可得

解得

2)平均成绩为:

3)由(2)知,在抽取的名学生中,比赛成绩优秀的有人,由此可得完整的列联表:

优秀

非优秀

合计

男生

女生

合计

的观测值

∴没有的把握认为比赛成绩是否优秀与性别有关

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若不等式解集为,求实数的值;

(2)在(1)的条件下,若不等式解集非空,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正三棱柱ABC=A1B1C1的各棱长都是4EBC的中点,动点F在侧棱CC1上,且不与点C重合.

1)当CF=1时,求证:EF⊥A1C

2)设二面角C﹣AF﹣E的大小为θ,求tanθ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,的角平分线所在直线为边的高线所在直线为边的高线所在直线为

1)求直线的方程;

2)求直线的方程;

3)求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中

(Ⅰ)当为偶函数时,求函数的极值;

(Ⅱ)若函数在区间上有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,平面,底面为菱形,E中点,M的中点,F上的动点.

1)求证:平面平面

2)直线与平面所成角的正切值为,当F中点时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线过原点且倾斜角为.以坐标原点为极点,轴正半轴为极轴建立坐标系,曲线的极坐标方程为.在平面直角坐标系中,曲线与曲线关于直线对称.

(Ⅰ)求曲线的极坐标方程;

(Ⅱ)若直线过原点且倾斜角为,设直线与曲线相交于两点,直线与曲线相交于两点,当变化时,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱中,分别是的中点,点在直线上运动,且

(1)证明:无论取何值,总有平面

(2)是否存在点,使得平面与平面的夹角为?若存在,试确定点的位置,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案