精英家教网 > 高中数学 > 题目详情
3
0
|x2-4|dx
=
 
分析:利用定积分的运算法则,找出被积函数的原函数,同时注意取绝对值符号简化计算.
解答:解:
3
0
|x2-4|dx=
2
0
(4-x2)dx+
3
2
(x2-4)dx=(4x-
1
3
x3)
|
2
0
+(
1
3
x3-4x)
|
3
2

=8-
8
3
+9-12-
8
3
+8
=
23
3
                                                                                     
故答案为:
23
3
点评:本题主要考查定积分的基本运算,解题关键是找出被积函数的原函数,利用区间去绝对值符号也是注意点,本题属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax+b,g(x)=x2+cx+d.若f(2x+1)=4g(x),且f′x=g′(x),f(5)=30,求g(4).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+ax+b,g(x)=x2+cx+d,又f(2x+1)=4g(x),且f′(x)=g′(x),f(5)=30,求g(4).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+ax+b,g(x)=x2+cx+d,又f(2x+1)=4g(x),且f′(x)=g′(x),f(5)=30,求g(4).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知()n的展开式中,第2,3,4项的系数顺次成等差数列,则展开式中含x2的项的系数为

A.27             B.30                 C.35            D.38

查看答案和解析>>

科目:高中数学 来源:2011年高三数学复习(第11章 导数及其应用):11.1 导数应用的题型与方法(解析版) 题型:解答题

已知函数f(x)=x2+ax+b,g(x)=x2+cx+d.若f(2x+1)=4g(x),且f′x=g′(x),f(5)=30,求g(4).

查看答案和解析>>

同步练习册答案