精英家教网 > 高中数学 > 题目详情
精英家教网如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,BF⊥面AEC.
(1)求证:AE∥平面BFD;
(2)求AC与平面BCE所成角的正弦值.
分析:(1)连AC、BD交于G,连GF,因BC=EB,BF⊥面AEC,则F是EC中点,根据中位线可知GF∥AE,AE?面BFD,FG?面BFD,根据线面平行的判定定理可知AE∥面BFD;
(2)根据AD⊥面ABE,则BC⊥面ABE,从而BC⊥AE,因BF⊥面AEC,则AE⊥BF,从而AE⊥面BCE,根据线面所成角的定义可知∠ACE就是AC与平面BCE所成的角,在三角形ACE中求出此角的正弦值即可.
解答:解:(1)证明:连AC、BD交于G,连GF.
∵BC=EB,BF⊥面AEC,∴F是EC中点.∴GF∥AE
∵AE?面BFD,FG?面BFD.∴AE∥面BFD
(2)AD⊥面ABE,
∴BC⊥面ABE,
∴BC⊥AE
∵BF⊥面AEC,
∴AE⊥BF,
∴AE⊥面BCE,
∴∠ACE就是AC与平面BCE所成的角
sin∠ACE=
3
3
点评:本题考查直线与平面平行的判断,以及直线与平面所成角等有关知识,考查学生空间想象能力,逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AB=
8
3
3
,BC=2,椭圆M的中心和准线分别是已知矩形的中心和一组对边所在直线,矩形的另一组对边间的距离为椭圆的短轴长,椭圆M的离心率大于0.7.
(I)建立适当的平面直角坐标系,求椭圆M的方程;
(II)过椭圆M的中心作直线l与椭圆交于P,Q两点,设椭圆的右焦点为F2,当∠PF2Q=
3
时,求△PF2Q的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD中,AB=1,AD=2,M为AD的中点,则
BM
BD
的值为
 

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

A 若方程ax-x-a=0有两个实数解,则a的取值范围是
(1,+∞)
(1,+∞)

B 如图,矩形ABCD中边长AB=2,BC=1,E为BC的中点,若F为正方形内(含边界)任意一点,则
AE
AF
的最大值为
9
2
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD中,DC=
3
,AD=1,在DC上截取DE=1,将△ADE沿AE翻折到D'点,当D'在平面ABC上的射影落在AE上时,四棱锥D'-ABCE的体积是
2
6
-
2
12
2
6
-
2
12
;当D'在平面ABC上的射影落在AC上时,二面角D'-AE-B的平面角的余弦值是
2-
3
2-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)如图,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD
(1)问BC边上是否存在Q点,使
PQ
QD
,说明理由.
(2)问当Q点惟一,且cos<
BP
QD
>=
10
10
时,求点P的位置.

查看答案和解析>>

同步练习册答案