精英家教网 > 高中数学 > 题目详情
若f(x)=x2-x+b,且f(log2a)=b,f(a)=4(a>0且a≠1),
(1)求a,b的值;
(2)求的值域;
(3)求的单调区间.
【答案】分析:(1)由f(log2a)=b,f(a)=4代入,结合a>0且a≠1可求a,b
(2)由(1)可得,y=log2x,结合及对数函数的单调性可求函数的值域
(3)由=,结合二次函数与对数函数的单调性及复合函数的单调性可求函数的单调区间
解答:解:(1)∵f(log2a)=b,f(a)=4
∴a2-a+b=4,
∴log2a=1或log2a=0(舍)
∴a=2,b=2; 
(2)由(1)可得,y=log2x

∴-1≤y≤2
故函数的值域为[-1,2]
(3)∵=
令t=x2-2x-1=(x-1)2-2,
∵函数t=x2-2x-1=(x-1)2-2对称轴x=1,则由二次函数的性质可知可得单调减区间:(-∞,1),单调递增区间:(1,+∞)
∵y=2t为单调递增函数
由复合函数的单调性可知,函数y=的单调减区间:(-∞,1);增区间:(1,+∞)
点评:本题主要考查了利用待定系数法求解函数的函数解析式,对数函数的值域的求解,复合函数的单调区间的求解,属于函数知识的综合应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x>
12
,函数f(x)=x2,h(x)=2e lnx(e为自然常数).
(Ⅰ)求证:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图象为函数f(x),g(x)的“边界”.已知函数g(x)=-4x2+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图象为边界”和“函数f(x),g(x)的图象有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)的定义域为R,若存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立,则称f(x)为F函数.现给出下列函数:
①f(x)=2x;
②f(x)=x2+1;
f(x)=
2
(sinx+cosx)

f(x)=
x
x2-x+1

⑤f(x)是定义在实数集R上的奇函数,且对一切x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.
其中是F函数的函数有
①④⑤
①④⑤

查看答案和解析>>

科目:高中数学 来源:郑州二模 题型:解答题

已知x>
1
2
,函数f(x)=x2,h(x)=2e lnx(e为自然常数).
(Ⅰ)求证:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图象为函数f(x),g(x)的“边界”.已知函数g(x)=-4x2+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图象为边界”和“函数f(x),g(x)的图象有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013年高考数学压轴大题训练:函数与不等式的恒成立问题(解析版) 题型:解答题

已知x>,函数f(x)=x2,h(x)=2e lnx(e为自然常数).
(Ⅰ)求证:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图象为函数f(x),g(x)的“边界”.已知函数g(x)=-4x2+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图象为边界”和“函数f(x),g(x)的图象有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年河南省郑州市高考数学二模试卷(理科)(解析版) 题型:解答题

已知x>,函数f(x)=x2,h(x)=2e lnx(e为自然常数).
(Ⅰ)求证:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图象为函数f(x),g(x)的“边界”.已知函数g(x)=-4x2+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图象为边界”和“函数f(x),g(x)的图象有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由.

查看答案和解析>>

同步练习册答案