【题目】从某批产品中,有放回地抽取产品两次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”,其概率P(A)=0.96.
(1)求从该批产品中任取1件是二等品的概率p.
(2)若该批产品共100件,从中无放回抽取2件产品,ξ表示取出的2件产品中二等品的件数.求ξ的分布列.
【答案】(1)0.2.(2)见解析
【解析】试题分析:(1)分析题意可知事件A可分为两种情况:“取出的2件产品中无二等品”, “取出的2件产品中恰有1件二等品”,然后列式求解即可(2)无放回抽取可得此问题为超几何分布,先写出ξ的可能取值为0,1,2,然后对应写出概率列出分布列即可
试题解析:
解:(1)记A0表示事件“取出的2件产品中无二等品”,A1表示事件“取出的2件产品中恰有1件二等品”,
则A0,A1互斥,且A=A0∪A1,故P(A)=P(A0∪A1)=P(A0)+P(A1)=(1-p)2+
p(1-p) =1-p2,
即0.96=1-p2.解得p1=0.2,p2=-0.2(舍去).
故从该批产品中任取1件是二等品的概率为0.2.
(2)ξ的可能取值为0,1,2,
该批产品共100件,由(1)知其二等品有100×0.2=20(件),
故
,
,
.
所以ξ的分布列为
ξ | 0 | 1 | 2 |
P |
|
|
|
科目:高中数学 来源: 题型:
【题目】交强险是车主必须为机动车购买的险种,若普通
座以下私家车投保交强险第一年的费用(基准保费)统一为
元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
![]()
某机构为了研究某一品牌普通
座以下私家车的投保情况,随机抽取了
辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 |
|
|
|
|
|
|
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这
辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(Ⅰ)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,
,记
为某同学家里的一辆该品牌车在第四年续保时的费用,求
的分布列与数学期望;(数学期望值保留到个位数字)
(Ⅱ)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损
元,一辆非事故车盈利
元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至少有一辆事故车的概率;
②若该销售商一次购进
辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一种饮料每箱装有6听,经检测,某箱中每听的容量(单位:ml)如以下茎叶图所示.
![]()
(Ⅰ)求这箱饮料的平均容量和容量的中位数;
(Ⅱ)如果从这箱饮料中随机取出2听饮用,求取到的2听饮料中至少有1听的容量为250ml的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数![]()
(Ⅰ)讨论函数
的单调区间与极值;
(Ⅱ)若
且
恒成立,求
的最大值;
(Ⅲ)在(Ⅱ)的条件下,且
取得最大值时,设
,且函数
有两个零点
,求实数
的取值范围,并证明: ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,圆
的参数方程
,以
为极点,
轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆
的极坐标方程;
(Ⅱ)直线
的极坐标方程是
,射线
与圆
的交点为
,与直线
的交点为
,求线段
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,(
,
).
(1)若
,
,求函数
的单调增区间;
(2)若
时,不等式
在
上恒成立,求实数
的取值范围;
(3)当
,
时,记函数
的导函数
的两个零点是
和
(
),求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com