【题目】某校为了纪念“中国红军长征90周年”,增强学生对“长征精神”的深刻理解,在全校组织了一次有关“长征”的知识竞赛,经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得20分,答错得0分.假设甲队中每人答对的概率均为
,乙队中3人答对的概率分别为
,
,
,且各人回答正确与否相互之间没有影响,用
表示乙队的总得分.
(1)求
的分布列和均值;
(2)求甲、乙两队总得分之和等于40分且甲队获胜的概率.
【答案】
(1)解:由题意知,
的所有可能取值为0,20,40,60.
,
,
,
.
的分布列为:
| 0 | 20 | 40 | 60 |
|
|
|
|
|
所以
.
(2)解:记“甲队得40分,乙队得0分”为事件
.
又
,
故甲、乙两队总得分之和为40分且甲队获胜的概率为:
.
【解析】(1)明确
的所有可能取值,并确定相应的概率,从而得到分布列及期望;(2)记“甲队得40分,乙队得0分”为事件
,则
。
【考点精析】关于本题考查的离散型随机变量及其分布列,需要了解在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】(1)两个共轭复数的差是纯虚数;(2)两个共轭复数的和不一定是实数;(3)若复数a+bi(a,b∈R)是某一元二次方程的根,则a﹣bi是也一定是这个方程的根;(4)若z为虚数,则z的平方根为虚数,
其中正确的个数为( )
A.3
B.2
C.1
D.0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数fn(x)=
x3﹣
(n+1)x2+x(n∈N*),数列{an}满足an+1=f'n(an),a1=3.
(1)求a2 , a3 , a4;
(2)根据(1)猜想数列{an}的通项公式,并用数学归纳法证明;
(3)求证:
+
+…+
<
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,其中左焦点为
.
(1)求椭圆
的方程;
(2)过
的直线
与椭圆
相交于
两点,若
的面积为
,求以
为圆心且与直线
相切的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,游客从某旅游景区的景点
处下上至
处有两种路径.一种是从
沿直线步行到
,另一种是先从
沿索道乘缆车到
,然后从
沿直线步行到
.现有甲、乙两位游客从
处下山,甲沿
匀速步行,速度为
.在甲出发
后,乙从
乘缆车到
,在
处停留
后,再从
匀速步行到
,假设缆车匀速直线运动的速度为
,山路
长为1260
,经测量
,
.
![]()
(1)求索道
的长;
(2)问:乙出发多少
后,乙在缆车上与甲的距离最短?
(3)为使两位游客在
处互相等待的时间不超过
,乙步行的速度应控制在什么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双曲线
=1(a>1,b>0)的焦点距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l的距离之和
.求双曲线的离心率e的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 满足an=
+2n﹣2,n∈N* , 且S2=6.
(1)求数列{an}的通项公式;
(2)证明:
+
+
+…+
<
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com