【题目】一 厂家在一批产品出厂前要对其进行质量检验,检验方案是: 先从这批产品中任取3件进行检验,这3件产品中优质品的件数记为
.如果
,再从这批产品中任取3件进行检验,若都为优质品,则这批产品通过检验;如果
,再从这批产品中任取4件进行检验,若都为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.
假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为
,且各件产品是否为优质品相互独立.
(1) 求这批产品通过检验的概率;
(2) 已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为
(单位: 元),求
的分布列及数学期望.
科目:高中数学 来源: 题型:
【题目】《算法统宗》是中国古代数学名著,由明代数学家程大位所著,该作完善了珠算口诀,确立了算盘用法,完成了由筹算到珠算的彻底转变,该作中有题为“李白沽酒”“李白街上走,提壶去买酒。遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒。借问此壶中,原有多少酒?”,如图为该问题的程序框图,若输出的
值为0,则开始输入的
值为( )
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程是
,曲线
的极坐标方程为
.
(1)求曲线
的直角坐标方程;
(2)设曲线
交于点
,曲线
与
轴交于点
,求线段
的中点到点
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面四个命题中,其中正确命题的序号为____________.
① 函数
是周期为
的偶函数;
② 若
是第一象限的角,且
,则
;
③
是函数
的一条对称轴方程;
④ 在
内方程
有3个解
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面上有两定点A、B,该平面上一动点P与两定点A、B的连线的斜率乘积等于常数
,则动点P的轨迹可能是下面哪种曲线:①直线;②圆;③抛物线;④双曲线;⑤椭圆_____(将所有可能的情况用序号都写出来)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线M上的动点
到定点
距离是它到定直线
距离的一半.
(1)求曲线M的方程;
(2)设过点
且倾斜角为
的直线与曲线M相交与A、B两点,在定直线l上是否存在点C,使得
,若存在,求出点C的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数).以坐标原点为极点,
轴正半轴为极轴建立极坐标系,圆
的极坐标方程为
.
(1)求直线
和圆
的普通方程;
(2)已知直线
上一点
,若直线
与圆
交于不同两点
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,
,
为
的中点,
平面
,垂足
落在线段
上,
为
的重心,已知
,
,
,
.
![]()
(1)证明:
平面
;
(2)求异面直线
与
所成角的余弦值;
(3)设点
在线段
上,使得
,试确定
的值,使得二面角
为直二面角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com