精英家教网 > 高中数学 > 题目详情

【题目】已知随圆E: + =1(a>b>0)与过原点的直线交于A、B两点,右焦点为F,∠AFB=120°,若△AFB的面积为4 ,则椭圆E的焦距的取值范围是(
A.[2,+∞)
B.[4,+∞)
C.[2 ,+∞)
D.[4 ,+∞)

【答案】B
【解析】解:取椭圆的左焦点F1,连接AF1,BF1

则AB与FF1互相平分,

∴四边形AFBF1是平行四边形,

∴AF1=BF,

∵AF+AF1=2a,∴AF+BF=2a,

∵S△ABF= AFBFsin120°= AFBF=4

∴AFBF=16,

∵2a=AF+BF≥2 =8,∴a≥4,

又S△ABF= =c|yA|=4

∴c=

∴当|yA|=b= 时,c取得最小值,此时b= c,

∴a2=3c2+c2=4c2,∴2c=a,

∴2c≥4.

故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE(A1平面ABCD),若M、O分别为线段A1C、DE的中点,则在△ADE翻转过程中,下列说法错误的是(
A.与平面A1DE垂直的直线必与直线BM垂直
B.异面直线BM与A1E所成角是定值
C.一定存在某个位置,使DE⊥MO
D.三棱锥A1﹣ADE外接球半径与棱AD的长之比为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0)的左、右焦点分别是F1 , F2 , 过F2的直线交双曲线的右支于P,Q两点,若|PF1|=|F1F2|,且3|PF2|=2|QF2|,则该双曲线的离心率为(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=aex﹣blnx,曲线y=f(x)在点(1,f(1))处的切线方程为
(1)求a,b;
(2)证明:f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】漳州水仙鳞茎硕大,箭多花繁,色美香郁,素雅娟丽,有“天下水仙数漳州”之美誉.现某水仙花雕刻师受雇每天雕刻250粒水仙花,雕刻师每雕刻一粒可赚1.2元,如果雕刻师当天超额完成任务,则超出的部分每粒多赚0.5元;如果当天未能按量完成任务,则按完成的雕刻量领取当天工资. (Ⅰ)求雕刻师当天收入(单位:元)关于雕刻量n(单位:粒,n∈N)的函数解析式f(n);
(Ⅱ)该雕刻师记录了过去10天每天的雕刻量n(单位:粒),整理得如表:

雕刻量n

210

230

250

270

300

频数

1

2

3

3

1

以10天记录的各雕刻量的频率作为各雕刻量发生的概率.
(ⅰ)在当天的收入不低于276元的条件下,求当天雕刻量不低于270个的概率;
(ⅱ)若X表示雕刻师当天的收入(单位:元),求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五面体ABCDEF中,面CDE和面ABF都为等边三角形,面ABCD是等腰梯形,点P、Q分别是CD、AB的中点,FQ∥EP,PF=PQ,AB=2CD=2.
(1)求证:平面ABF⊥平面PQFE;
(2)若PQ与平面ABF所成的角为 ,求三棱锥P﹣QDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)作出函数y=f(x)在一个周期内的图象,并写出其单调递减区间;
(2)当 时,求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 . (Ⅰ)求f(x)的定义域;
(Ⅱ)设β是锐角,且 ,求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:函数f(x)=(m2﹣1) 上为增函数;命题q:函数g(x)=x2﹣2elnx﹣m有零点.
(I)若p∨q为假命题,求实数m的取值范围;
(Ⅱ)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案