【题目】从某工厂生产的某种产品中抽取1000件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
![]()
(1)求这1000件产品质量指标值的样本平均数
和样本方差
(同一组数据用该区间的中点值作代表)
(2)由频率分布直方图可以认为,这种产品的质量指标值
服从正态分布
,其中以
近似为样本平均数
,
近似为样本方差
.
(ⅰ)利用该正态分布,求
;
(ⅱ)某用户从该工厂购买了100件这种产品,记
表示这100件产品中质量指标值为于区间(127.6,140)的产品件数,利用(ⅰ)的结果,求
.
附:
.若
,则
,
.
科目:高中数学 来源: 题型:
【题目】10月1日,某品牌的两款最新手机(记为
型号,
型号)同时投放市场,手机厂商为了解这两款手机的销售情况,在10月1日当天,随机调查了5个手机店中这两款手机的销量(单位:部),得到下表:
手机店 |
|
|
|
|
|
| 6 | 6 | 13 | 8 | 11 |
| 12 | 9 | 13 | 6 | 4 |
(Ⅰ)若在10月1日当天,从
,
这两个手机店售出的新款手机中各随机抽取1部,求抽取的2部手机中至少有一部为
型号手机的概率;
(Ⅱ)现从这5个手机店中任选3个举行促销活动,用
型号手机销量超过
型号手机销量的手机店的个数,求随机变量
的分布列和数学期望;
(III)经测算,
型号手机的销售成本
(百元)与销量(部)满足关系
.若表中
型号手机销量的方差
,试给出表中5个手机店的
型号手机销售成本的方差
的值.(用
表示,结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产某种产品的年固定成本为250万元,每生产
千件,需另投入成本
,当年产量不足80千件时,
(万元);当年产量不小于80千件时,
(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润
(万元)关于年产量
(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,游客从景点
下山至
有两种路径:一种是从
沿直线步行到
,另一种是先从
乘缆车到
,然后从
沿直线步行到
.现有甲、乙两位游客从
下山,甲沿
匀速步行,速度为
米/分钟.在甲出发
分钟后,乙从
乘缆车到
,在
处停留
分钟后,再从
匀速步行到
.已知缆车从
到
要
分钟,
长为
米,若
,
.为使两位游客在
处互相等待的时间不超过
分钟,则乙步行的速度
(米/分钟)的取值范围是 __________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某分公司经销某种品牌产品,每件产品的成本为30元,并且每件产品须向总公司缴纳
元(
为常数,
)的管理费.根据多年的统计经验,预计当每件产品的售价为
元时,产品一年的销售量为
为自然对数的底数)万件.已知每件产品的售价为40元时,该产品一年的销售量为500万件.经物价部门核定每件产品的售价
最低不低于35元,最高不超过41元.
(Ⅰ)求分公司经营该产品一年的利润
万元与每件产品的售价
元的函数关系式;
(Ⅱ)当每件产品的售价为多少元时,该产品一年的利润
最大,并求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,直线
:
,
为平面上的动点,过点
作直线
的垂线,垂足为
,且满足
.
(1)求动点
的轨迹
的方程;
(2)过点
作直线
与轨迹
交于
,
两点,
为直线
上一点,且满足
,若
的面积为
,求直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com