精英家教网 > 高中数学 > 题目详情

【题目】从某工厂生产的某种产品中抽取1000件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:

(1)求这1000件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表)

(2)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中以近似为样本平均数近似为样本方差

(ⅰ)利用该正态分布,求

(ⅱ)某用户从该工厂购买了100件这种产品,记表示这100件产品中质量指标值为于区间(127.6,140)的产品件数,利用(ⅰ)的结果,求

附:.若,则

【答案】(1)平均数=140;(2)(ⅰ)0.3413(ⅱ)见解析

【解析】

(1)由频率分布直方图中的数据结合平均数和方差公式直接计算即可;(2)(ⅰ)由(1)中数据知,计算出答案即可;(ⅱ)依题意知服从二项分布,由二项分布的直接计算即可.

(1)抽取产品的质量指标值的样本平均数和样本方差分别为

(2)(ⅰ)由(1)知,

从而

(ⅱ)由(ⅰ)知,一件产品的质量指标值位于区间的概率为

依题意知服从二项分布

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】101日,某品牌的两款最新手机(记为型号,型号)同时投放市场,手机厂商为了解这两款手机的销售情况,在101日当天,随机调查了5个手机店中这两款手机的销量(单位:部),得到下表:

手机店

型号手机销量

6

6

13

8

11

型号手机销量

12

9

13

6

4

(Ⅰ)若在101日当天,从这两个手机店售出的新款手机中各随机抽取1部,求抽取的2部手机中至少有一部为型号手机的概率;

(Ⅱ)现从这5个手机店中任选3个举行促销活动,用表示其中型号手机销量超过型号手机销量的手机店的个数,求随机变量的分布列和数学期望;

(III)经测算,型号手机的销售成本(百元)与销量(部)满足关系.若表中型号手机销量的方差,试给出表中5个手机店的型号手机销售成本的方差的值.(用表示,结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

(1)若直线是曲线的一条切线,求实数的值;

(2)当时,若函数上有两个零点.求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.

1)写出年利润(万元)关于年产量(千件)的函数解析式;

2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,游客从景点下山至有两种路径:一种是从沿直线步行到,另一种是先从乘缆车到,然后从沿直线步行到.现有甲、乙两位游客从下山,甲沿匀速步行,速度为米/分钟.在甲出发分钟后,乙从乘缆车到,在处停留分钟后,再从匀速步行到.已知缆车从分钟, 长为米,若.为使两位游客在处互相等待的时间不超过分钟,则乙步行的速度(米/分钟)的取值范围是 __________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某分公司经销某种品牌产品,每件产品的成本为30元,并且每件产品须向总公司缴纳(为常数,)的管理费.根据多年的统计经验,预计当每件产品的售价为元时,产品一年的销售量为为自然对数的底数)万件.已知每件产品的售价为40元时,该产品一年的销售量为500万件.经物价部门核定每件产品的售价最低不低于35元,最高不超过41元.

(Ⅰ)求分公司经营该产品一年的利润万元与每件产品的售价元的函数关系式;

(Ⅱ)当每件产品的售价为多少元时,该产品一年的利润最大,并求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于以为公共焦点的椭圆和双曲线,设是它们的一个公共点,分别为它们的离心率.,则的最大值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)求经过点,且离心率为的椭圆的标准方程;

2)已知双曲线与椭圆有相同的焦点,且过点,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,直线为平面上的动点,过点作直线的垂线,垂足为,且满足

(1)求动点的轨迹的方程;

(2)过点作直线与轨迹交于两点,为直线上一点,且满足,若的面积为,求直线的方程.

查看答案和解析>>

同步练习册答案