【题目】如图,
是边长为
的菱形,
,
平面
,
平面
,
.
![]()
(Ⅰ)求证:
;
(Ⅱ)求直线
与平面
所成角的正弦值.
【答案】(Ⅰ)见解析;(Ⅱ)
.
【解析】试题分析:(I)连接
,根据菱形的性质可知
,结合
,可得
平面
,垂直同一个平面的两条直线平行,故
四点共面,故
.(2)以
为坐标原点,分别以
,
的方向为
轴,
轴的正方向,建立空间直角坐标系
.计算直线
的方向向量和平面
的法向量,利用线面角公式求得线面角的正弦值.
试题解析:
(Ⅰ)证明:连接
,
因为
是菱形,所以
.
因为
平面
,
平面
,
所以
.
因为
,所以
平面
.
因为
平面
,
平面
,所以
.
所以
,
,
,
四点共面.
因为
平面
,所以
.
![]()
(Ⅱ)如图,以
为坐标原点,分别以
,
的方向为
轴,
轴的正方向,建立空间直角坐标系
.
可以求得
,
,
,
,
.
所以
,
.
设平面
的法向量为
,
则
即![]()
不妨取
,则平面
的一个法向量为
.
因为
,
所以
.
所以直线
与平面
所成角的正弦值为
.
![]()
科目:高中数学 来源: 题型:
【题目】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图. 图中A点表示十月的平均最高气温约为
,B点表示四月的平均最低气温约为
. 下面叙述不正确的是 ( )
![]()
A. 各月的平均最低气温都在
以上
B. 七月的平均温差比一月的平均温差大
C. 三月和十一月的平均最高气温基本相同
D. 平均最高气温高于
的月份有5个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知圆
的圆心在直线
上,且过点
,与直线
相切.
(
)求圆
的方程.
(
)设直线
与圆
相交于
,
两点.求实数
的取值范围.
(
)在(
)的条件下,是否存在实数
,使得弦
的垂直平分线
过点
,若存在,求出实数
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).
运行区间 | 成人票价(元/张) | 学生票价(元/张) | ||
出发站 | 终点站 | 一等座 | 二等座 | 二等座 |
南靖 | 厦门 | 26 | 22 | 16 |
若师生均购买二等座票,则共需1020元.
(1)参加活动的教师有人,学生有人;
(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.
①求y关于x的函数关系式;
②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将一枚质地均匀且四个面上分别标有1,2,3,4的正四面体先后抛掷两次,其底面落于桌面上,记第一次朝下面的数字为
,第二次朝下面的数字为
.用
表示一个基本事件.
请写出所有基本事件;
求满足条件“
”为整数的事件的概率;
求满足条件“
”的事件的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1~4,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1 , S2 , S3 , …,S10 , 则S1+S2+S3+…+S10=![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥S-ABCD中,底面ABCD为菱形,SD⊥平面ABCD,点E为SD的中点.
(1)求证:直线SB∥平面ACE
(2)求证:直线AC⊥平面SBD.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“五一”假期期间,某餐厅对选择
、
、
三种套餐的顾客进行优惠。对选择
、
套餐的顾客都优惠10元,对选择
套餐的顾客优惠20元。根据以往“五一”假期期间100名顾客对选择
、
、
三种套餐的情况得到下表:
选择套餐种类 |
|
|
|
选择每种套餐的人数 | 50 | 25 | 25 |
将频率视为概率.
(I)若有甲、乙、丙三位顾客选择某种套餐,求三位顾客选择的套餐至少有两样不同的概率;
(II)若用随机变量
表示两位顾客所得优惠金额的综合,求
的分布列和期望。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点P的坐标为(x1 , y1),点Q的坐标为(x2 , y2),且x1≠x2 , y1≠y2 , 若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.![]()
(1)已知点A的坐标为(1,0),
①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;
②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;
(2)⊙O的半径为
,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com