精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax-1+b
1-x2
,其中a∈{0,1},b∈{1,2},则f(x)>0在x∈[-1,0]上有解的概率为(  )
A、
1
2
B、
1
3
C、
1
4
D、
1
5
分析:由题意知本题是一个等可能事件的概率,试验发生所包含的事件数是2×2=4种结果,根据所给的a,b的不同的值,列举出有解的情况,得到概率.
解答:解:由题意知本题是一个等可能事件的概率,
试验发生所包含的事件数是2×2=4种结果,
当a=0,b=1时,f(x)=
1-x2
-1
>0,即
1-x2
>1
,即1-x2>1或1-x2<-1,在x∈[-1,0]上有解,
当a=0,b=2时,f(x)=2
1-x2
-1
>0,即2
1-x2
>1
,即1-x2
1
2
1-x2
1
2
,在x∈[-1,0]上有解,
当a=1,b=1时,f(x)=x-1+
1-x2
>0,即-x+1<
1-x2
,在x∈[-1,0]上无解,
当a=1,b=2时,f(x)=x-1+2
1-x2
>0,即-x+1<2
1-x2
,在x∈[-1,0]上无解,
综上可知有两个有解,
∴要求的概率是
2
4
=
1
2

故选A.
点评:本题看成等可能事件的概率,本题解题的关键是对于a,b的不同的值代入进行检验,判断有无解,这里的运算比较繁琐,需要认真做题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案