精英家教网 > 高中数学 > 题目详情
20.已知函数$f(x)=\frac{alnx}{x}$,g(x)=b(x+1),其中a≠0,b≠0
(1)若a=b,讨论F(x)=f(x)-g(x)的单调区间;
(2)已知函数f(x)的曲线与函数g(x)的曲线有两个交点,设两个交点的横坐标分别为x1,x2,证明:$\frac{{{x_1}+{x_2}}}{a}g({x_1}+{x_2})>2$.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可
(2)问题转化为证$\frac{{{x_1}+{x_2}}}{{{x_1}-{x_2}}}•ln\frac{x_1}{x_2}>2$,$t=\frac{x_1}{x_2}>1$,只需证明$\frac{t+1}{t-1}•lnt>2,?t>1$成立,根据函数的单调性证明即可.

解答 解:(1)由已知得$F(x)=f(x)-g(x)=a(\frac{lnx}{x}-x-1)$,
∴$F'(x)=a(\frac{1-lnx}{x^2}-1)=\frac{a}{x^2}(1-{x^2}-lnx)$,
当0<x<1时,∵1-x2>0,-lnx>0,∴1-x2-lnx>0,;
当x>1时,∵1-x2<0,-lnx<0,∴1-x2-lnx<0.
故若a>0,F(x)在(0,1)上单调递增,在(1,+∞)上单调递减;
故若a<0,F(x)在(0,1)上单调递减,在(1,+∞)上单调递增.
(2)不妨设x1>x2,依题意$a\frac{{ln{x_1}}}{x_1}=b({x_1}-1)$,
∴$aln{x_1}=b({x_1}^2-{x_1})…①$,同理得$aln{x_2}=b({x_2}^2-{x_2})…②$
由①-②得,∴$aln\frac{x_1}{x_2}=b({x_1}^2-{x_1}-{x_2}^2+{x_2})=b({x_1}-{x_2})({x_1}+{x_2}-1)$,
∴$\frac{b}{a}({x_1}+{x_2}-1)=\frac{{ln\frac{x_1}{x_2}}}{{({x_1}-{x_2})}}$,
∴$\frac{{{x_1}+{x_2}}}{a}g({x_1}+{x_2})=({x_1}+{x_2})\frac{b}{a}({x_1}+{x_2}-1)=\frac{{{x_1}+{x_2}}}{{{x_1}-{x_2}}}•ln\frac{x_1}{x_2}$,
故只需证$\frac{{{x_1}+{x_2}}}{{{x_1}-{x_2}}}•ln\frac{x_1}{x_2}>2$,
取∴$t=\frac{x_1}{x_2}>1$,即只需证明$\frac{t+1}{t-1}•lnt>2,?t>1$成立,
即只需证$p(t)=lnt-2\frac{t-1}{t+1}>0,?t>1$成立,
∵$p'(t)=\frac{1}{t}-\frac{4}{{{{(t+1)}^2}}}=\frac{{{{(t-1)}^2}}}{{t{{(t+1)}^2}}}>0$,
∴p(t)在区间[1,+∞)上单调递增,
∴p(t)>p(1)=0,?t>1成立,
故原命题得证.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,考查转化思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数y=2sinx在点$x=\frac{π}{3}$处的导数是(  )
A.-1B.1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.经过点P(0,2)的直线l,若直线l与连接A(-$\sqrt{3}$,-1),B(2,0)的线段总有公共点,则直线l的斜率的取值范围是(  )
A.$[-1,\frac{{\sqrt{3}}}{3}]$B.$[-1,\sqrt{3}]$C.$(-∞,-1]∪[\frac{{\sqrt{3}}}{3},+∞)$D.$(-∞,-1]∪[\sqrt{3},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.曲线C的方程$\left\{{\begin{array}{l}{x=2t+1}\\{y={t^2}-1}\end{array}}\right.$(t为参数),点(5,a)在曲线C上,则a=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.福利彩票“双色球”中红球的号码可以从01,02,03,…,32,33这33个二位号码中选取,小明利用如图所示的随机数表选取红色球的6个号码,选取方法是从第1行第9列和第10列的数字开始从左到右依次选取两个数字,则第四个被选中的红色球号码为(  )
81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85
06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49
A.12B.33C.06D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知实数x,y满足x2-xy+y2=1,则x+y的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直角坐标xOy中,直线l参数方程为$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2$\sqrt{3}$sin θ,P为直线l上一动点,当P到圆心C的距离最小时,则点P的直角坐标是(3,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一个圆锥与一个球的体积相等,圆锥的底面半径是球半径的3倍,圆锥的高与球半径之比为$\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对某交通要道以往的日车流量(单位:万辆)进行统计,得到如下记录:
日车流量x0≤x<55≤x<1010≤x<1515≤x<2020≤x<25x≥25
频率0.050.250.350.250.100
将日车流量落入各组的频率视为概率,并假设每天的车流量相互独立.
(Ⅰ)求在未来连续3天里,有连续2天的日车流量都不低于10万辆且另1天的日车流量低于5万辆的概率;
(Ⅱ)用X表示在未来3天时间里日车流量不低于10万辆的天数,求X的分布列、数学期望以及方差.

查看答案和解析>>

同步练习册答案