【题目】已知二次函数f(x)=ax2+bx+c,满足f(0)=2,f(x+1)-f(x)=2x-1.
(1)求函数f(x)的解析式;
(2)求f(x)在区间 [-1,2]上的最大值;
(3)若函数f(x)在区间
上单调,求实数
的取值范围.
【答案】(1)
;(2)5(3)
.
【解析】
(1)由
得
,再根据
得到
,进而得到函数的解析式;(2)根据函数的单调性求出最值即可;(3)结合函数图象的开口方向,只需函数图象的对称轴不在区间内,由此得到不等式,解不等式即可.
(1)由f(0)=2,得c=2.
由f(x+1)-f(x)=2x-1,
得2ax+a+b=2x-1,
所以
,解得
,
所以
.
(2)由(1)得
,
故函数f(x)图象的对称轴为x=1.
所以函数
在区间
上单调递减,在区间
上单调递增,
又f(-1)=5,f(2)=2,
所以f(x)在区间
上的最大值为
.
(3)因为f(x)的图象的对称轴方程为x=1,且函数f(x)在区间
上单调,
所以
,或
,
解得
,或
1,
因此
的取值范围为
.
科目:高中数学 来源: 题型:
【题目】已知函数
,
为偶函数,且当
时,
.记
.给出下列关于函数
的说法:①当
时,
;②函数
为奇函数;③函数
在
上为增函数;④函数
的最小值为
,无最大值. 其中正确的是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义区间
的长度
均为
,多个互无交集的区间的并集长度为各区间长度之和,例如
的长度
。用
表示不超过
的最大整数,例如
。记
。设
,
,若用
、
和
分别表示不等式
、方程
和不等式
解集区间的长度,则当
时,
____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两人同时生产内径为
的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出 5 件(单位:
) ,
甲:25.44,25.43, 25.41,25.39,25.38
乙:25.41,25.42, 25.41,25.39,25.42.
从生产的零件内径的尺寸看、谁生产的零件质量较高.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设{an}是等比数列,公比为q(q>0且q≠1),4a1 , 3a2 , 2a3成等差数列,且它的前4项和为S4=15.
(1)求{an}通项公式;
(2)令bn=an+2n(n=1,2,3…),求{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
的左、右焦点为
,右顶点为
,上顶点为
,若
,
与
轴垂直,且
.
(1)求椭圆方程;
(2)过点
且不垂直于坐标轴的直线与椭圆交于
两点,已知点
,当
时,求满足
的直线
的斜率
的取值范围.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com