精英家教网 > 高中数学 > 题目详情

(8分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,求;

(1) 第1次和第2次抽都到理科题的概率;

(2)在第1次抽到理科题的条件下, 第2次抽到理科题的概率;

 

【答案】

(1);(2).

【解析】(1)利用相互独立事件的概率公式求解;(2)利用条件概率公式求解即可。

解:(1)因为5道题中有3道理科题和2道文科题,所以两次都抽到理科题的概率为 ,(2)因为5道题中有3道理科题和2道文科题,所以第一次抽到理科题的前提下,第2次抽到理科题的概率为P=

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在一次考试中共有8道选择题,每道选择题都有4个选项,其中有且只有一个选项是正确的.某考生有4道题已选对正确答案,其余题中有两道只能分别判断2个选项是错误的,还有两道题因不理解题意只好乱猜.
(Ⅰ)求该考生8道题全答对的概率;
(Ⅱ)若评分标准规定:“每题只选一个选项,选对得5分,不选或选错得0分”,求该考生所得分数的分布列.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省怀化市高三上学期期末考试理科数学试卷(解析版) 题型:解答题

(本小题满分12分)

在一次数学考试中共有8道选择题,每道选择题都有4个选项,其中有且只有一个选项是正确的.某考生有5道题已选对正确答案,其余题中有两道只能分别判断2个选项是错误的,还有1道题因不理解题意只好乱猜.

(1) 求该考生8道题全答对的概率;

(2)若评分标准规定:“每题只选一个选项,选对得5分,不选或选错得0分”,求该考生所得分数的分布列.

 

查看答案和解析>>

科目:高中数学 来源:2013届江西省高二下学期期中考试理科数学试卷(解析版) 题型:解答题

在本次数学期中考试试卷中共有10道选择题,每道选择题有4个选项,其中只有一个是正确的。评分标准规定:“每题只选一项,答对得5分,不答或答错得0分”.某考生每道题都给出一个答案, 且已确定有7道题的答案是正确的,而其余题中,有1道题可判断出两个选项是错误的,有一道可以判断出一个选项是错误的,还有一道因不了解题意只能乱猜。试求出该考生:

(1)选择题得满分(50分)的概率;

(2)选择题所得分数的数学期望。

【解析】第一问总利用独立事件的概率乘法公式得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为,有1道题答对的概率为,还有1道答对的概率为

所以得分为50分的概率为:

第二问中,依题意,该考生得分的范围为{35,40,45,50}         

得分为35分表示只做对了7道题,其余各题都做错,

所以概率为                            

得分为40分的概率为: 

同理求得,得分为45分的概率为: 

得分为50分的概率为:

得到分布列和期望值。

解:(1)得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为,有1道题答对的概率为,还有1道答对的概率为

所以得分为50分的概率为:                   …………5分

(2)依题意,该考生得分的范围为{35,40,45,50}            …………6分

得分为35分表示只做对了7道题,其余各题都做错,

所以概率为                              …………7分

得分为40分的概率为:     …………8分

同理求得,得分为45分的概率为:                     …………9分

得分为50分的概率为:                      …………10分

所以得分的分布列为

35

40

45

50

 

数学期望

 

查看答案和解析>>

科目:高中数学 来源:2010年北京市宣武区高三第二次模拟考试数学(理) 题型:解答题

(本小题共13分)[来源:Z,xx,k.Com]

在一次考试中共有8道选择题,每道选择题都有4个选项,其中有且只有一个选项是正确的.某考生有4道题已选对正确答案,其余题中有两道只能分别判断2个选项是错误的,还有两道题因不理解题意只好乱猜.

(Ⅰ) 求该考生8道题全答对的概率;

(Ⅱ)  若评分标准规定:“每题只选一个选项,选对得5分,不选或选错得0分”,求该考生所得分数的分布列.

 

查看答案和解析>>

同步练习册答案