【题目】已知三棱台ABC﹣A1B1C1中,平面BB1C1C⊥平面ABC,∠ACB=90°,BB1=CC1=B1C1=2,BC=4,AC=6 ![]()
(1)求证:BC1⊥平面AA1C1C
(2)点D是B1C1的中点,求二面角A1﹣BD﹣B1的余弦值.
【答案】
(1)证明:梯形BB1C1C中,BB1=CC1=B1C1=2,BC=4得:
,从而BC1⊥CC1,
因为平面BB1C1C⊥平面ABC,且AC⊥BC,
所以AC⊥平面BB1C1C,因此BC1⊥AC,
因为AC∩CC1=C,所以BC1⊥平面AA1C1C
(2)解:如图,以CA,CB所在直线分别为x轴,y轴,点C为原点建立空间直角坐标系,则A(6,0,0),B(0,4,0),C(0,0,0),C1(0,1,
),B1(0,3,
),D(0,2,
),A1(3,1,
),
平面BB1D的法向量
=(1,0,0),设平面AB1D的法向量为
=(x,y,z),
则
,
令z=
,得
(
,
),
所以所求二面角的余弦值是﹣
=﹣
.
![]()
【解析】(1)证明BC1⊥CC1 , BC1⊥AC,即可证明BC1⊥平面AA1C1C(2)以CA,CB所在直线分别为x轴,y轴,点C为原点建立空间直角坐标系,求出平面的法向量,即可求二面角A1﹣BD﹣B1的余弦值.
科目:高中数学 来源: 题型:
【题目】已知函数
(
).
(1)当
时,求函数
在
上的最大值和最小值;
(2)当
时,是否存在正实数
,当
(
是自然对数底数)时,函数
的最小值是3,若存在,求出
的值;若不存在,说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,圆
:
与
轴的正半轴交于点
,以点
为圆心的圆
:
与圆
交于
,
两点.
(1)当
时,求
的长;
(2)当
变化时,求
的最小值;
(3)过点
的直线
与圆A切于点
,与圆
分别交于点
,
,若点
是
的中点,试求直线
的方程.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近几年,京津冀等地数城市指数“爆表”,尤其2015年污染最重.为了探究车流量与PM2.5的浓度是否相关,现采集到北方某城市2015年12月份某星期星期一到星期日某一时间段车流量与PM2.5的数据如表:
时间 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
车流量x(万辆) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
PM2.5的浓度y(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(Ⅰ)由散点图知y与x具有线性相关关系,求y关于x的线性回归方程;
(Ⅱ)(ⅰ)利用(Ⅰ)所求的回归方程,预测该市车流量为8万辆时PM2.5的浓度;
(ⅱ)规定:当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良.为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数.)
参考公式:回归直线的方程是
,其中
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
,
的首项
,且满足
,
,其中
,设数列
,
的前项和分别为
,
.
(Ⅰ)若不等式
对一切
恒成立,求
.
(Ⅱ)若常数
且对任意的
,恒有
,求
的值.
(Ⅲ)在(Ⅱ)的条件下且同时满足以下两个条件:
(ⅰ)若存在唯一正整数
的值满足
;
(ⅱ)
恒成立.试问:是否存在正整数,使得
,若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地棚户区改造建筑平面示意图如图所示,经规划调研确定,棚改规划建筑用地区域近似为圆面,该圆面的内接四边形
是原棚户区建筑用地,测量可知边界
万米,
万米,
万米.
(1)请计算原棚户区建筑用地
的面积及
的长;
(2)因地理条件的限制,边界
不能更改,而边界
可以调整,为了提高棚户区建筑用地的利用率,请在圆弧
上设计一点
,使得棚户区改造后的新建筑用地
的面积最大,并求出最大值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正三棱柱ABC-A1B1C1的底面边长是2,侧棱长是
,D是AC的中点。
![]()
(1)求证:B1C∥平面A1BD;
(2)求二面角A1-BD-A的大小;
(3)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD,若存在,求出AE的长;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中(
为坐标原点),已知两点
,
,且三角形
的内切圆为圆
,从圆
外一点
向圆引切线
,
为切点。
(1)求圆
的标准方程.
(2)已知点
,且
,试判断点
是否总在某一定直线
上,若是,求出直线
的方程;若不是,请说明理由.
(3)已知点
在圆
上运动,求
的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com