精英家教网 > 高中数学 > 题目详情
(n∈N*),且,则n的值是(    )。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于数列{xn},如果存在一个正整数m,使得对任意的n(n∈N*)都有xn+m=xn成立,那么就把这样一类数列{xn}称作周期为m的周期数列,m的最小值称作数列{xn}的最小正周期,以下简称周期.例如当xn=2时,{xn}是周期为1的周期数列,当yn=sin(
π
2
n)
时,{yn}的周期为4的周期数列.
(1)设数列{an}满足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同时为0),且数列{an}是周期为3的周期数列,求常数λ的值;
(2)设数列{an}的前n项和为Sn,且4Sn=(an+1)2
①若an>0,试判断数列{an}是否为周期数列,并说明理由;
②若anan+1<0,试判断数列{an}是否为周期数列,并说明理由.
(3)设数列{an}满足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,数列{bn}的前n项和Sn,试问是否存在p、q,使对任意的n∈N*都有p≤
Sn
n
≤q
成立,若存在,求出p、q的取值范围;不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{bn}的前n项和为Sn,对任意的n∈N*,都有bn>0,且Sn2=b13+b23+…bn3;数列{an}满足a1=1,an+1=(1+cos2
bnπ
2
)an+sin2
bnπ
2
,n∈N*
(Ⅰ)求b1,b2的值及数列{bn}的通项公式;
(Ⅱ)求证:
a2
a1
+
a4
a3
+
a6
a5
…+
a2n
a2n-1
<n+
19
12
对一切n∈N+成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏)已知各项均为正数的两个数列{an}和{bn}满足:an+1=
an+bn
an2+bn2
,n∈N*
(1)设bn+1=1+
bn
an
,n∈N*,,求证:数列{(
bn
an
) 2}
是等差数列;
(2)设bn+1=
2
bn
an
,n∈N*,且{an}是等比数列,求a1和b1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)设f(x),g(x)是定义在R上的恒不为零的函数,对任意x,y∈R,都有f(x)f(y)=f(x+y),g(x)+g(y)=g(x+y),若a1=
1
2
an=f(n)(n∈N*)
,且b1=1,bn=g(n)(n∈N*),则数列{anbn}的前n项和为Sn为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)的定义域、值域均为R,f(x)的反函数为f-1(x),且对于任意的x∈R,均有数学公式,定义数列{an},a0=8,a1=10,an=f(an-1)(n∈N*).
(Ⅰ)求证:数学公式(n∈N*).
(Ⅱ)设bn=an+1-2an(n∈N*),求证:bn<(-6)•2-n(n∈N*);
(Ⅲ)是否存在常数A,B同时满足条件:
①当n=0,1时,数学公式
②当n≥2时(n∈N*,)数学公式.如果存在,求出A,B的值,如果不存在,说明理由.

查看答案和解析>>

同步练习册答案