精英家教网 > 高中数学 > 题目详情
关于f(x)=3sin(2x+
π
4
)
有以下命题:
①若f(x1)=f(x2)=0,则x1-x2=kπ(k∈Z);
②f(x)图象与g(x)=3cos(2x-
π
4
)
图象相同;
③f(x)在区间[-
8
,-
8
]
上是减函数;
④f(x)图象关于点(-
π
8
,0)
对称.
其中正确的命题是______.
由关于f(x)=3sin(2x+
π
4
)
,知:
①若f(x1)=f(x2)=0,则x1-x2=
k
2
π(k∈Z),故①不成立;
②∵f(x)=3sin(2x+
π
4
)
=3cos[
π
2
-(2x+
π
4
)]=3cos(2x-
π
4
),
∴f(x)图象与g(x)=3cos(2x-
π
4
)
图象相同,故②成立;
③∵f(x)=3sin(2x+
π
4
)
的减区间是:
π
2
+2kπ≤2x+
π
4
2
+2kπ
,k∈Z,
即[
π
8
+kπ,
8
+kπ],k∈Z,
∴f(x)在区间[-
8
,-
8
]
上是减函数,故③正确;
④∵f(x)=3sin(2x+
π
4
)
的对称点是(
2
-
π
8
,0),
∴f(x)图象关于点(-
π
8
,0)
对称,故④正确.
故答案为:②③④.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于f(x)=3sin(2x+
π
4
)
有以下命题:
①若f(x1)=f(x2)=0,则x1-x2=kπ(k∈Z);
②f(x)图象与g(x)=3cos(2x-
π
4
)
图象相同;
③f(x)在区间[-
8
,-
8
]
上是减函数;
④f(x)图象关于点(-
π
8
,0)
对称.
其中正确的命题是
②③④
②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=3sin(2x-
π
3
)
的图象为C,如下结论中不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=3sin(2x+
π
3
)
(x∈R),有下列命题:
①y=f(x)可改写为y=3cos(2x-
π
6
)

②y=f(x)是2π为最小正周期的周期函数;
③y=f(x)图象关于点(-
π
6
,0)对称;
④y=f(x)图象关于点直线x=-
π
6
对称.
其中正确命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江西模拟)已知函数f(x)=(
3
sinωx+cosωx)cosωx-
1
2
,(ω>0)的最小正周期为4π.
(1)若函数y=g(x)与y=f(x)的图象关于直线x=π对称,求y=g(x)的单调递增区间.
(2)在△ABC中角A,B,C,的对边分别是a,b,c满足(2a-c)cosB=b•cosC,求函数f(A)的取值范围.

查看答案和解析>>

同步练习册答案