精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,椭圆=1(a>b>0)的焦点为 F1(-1,0),F2(1,0),左、右顶点分别为A,B,离心率为,动点P到F1,F2的距离的平方和为6.
(1)求动点P的轨迹方程;
(2)若,Q为椭圆上位于x轴上方的动点,直线DM•CN,BQ分别交直线m于点M,N.
(i)当直线AQ的斜率为时,求△AMN的面积;
(ii)求证:对任意的动点Q,DM•CN为定值.
【答案】分析:(1)利用动点P到F1,F2的距离的平方和为6,建立方程,化简可得P的轨迹方程;
(2)确定椭圆的方程,求出M、N的坐标,( i)当直线AQ的斜率为时,直线方程与椭圆方程联立,表示出三角形的面积,即可求△AMN的面积;(ii)表示出DM,CN,计算DM•CN,可得定值.
解答:(1)解:设P(x,y),则
即(x+1)2+y2+(x-1)2+y2=6,整理得,x2+y2=2,
所以动点P的轨迹方程为x2+y2=2.…(4分)
(2)解:由题意知,,解得
所以椭圆方程为.  …(6分)
,设Q(x,y),y>0,则
直线AQ的方程为,令,得
直线BQ的方程为,令,得
( i)当直线AQ的斜率为时,有,消去x并整理得,,解得或y=0(舍),…(10分)
所以△AMN的面积==.   …(12分)
(ii)
所以
所以对任意的动点Q,DM•CN为定值,该定值为.    …(16分)
点评:本题考查轨迹方程,考查椭圆的标准方程,考查直线与椭圆的位置关系,考查三角形面积的计算,考查学生的计算能力,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案