【题目】已知函数
.
(1)当
时,判断函数
的单调性;
(2)若
恒成立,求
的取值范围;
(3)已知
,证明
.
【答案】(1)当
时,函数
在区间
单调递增,
单调递减;
(2)
;
(3)证明过程见解析
【解析】
(1)先求函数
的定义域,再求导数
,分别令
和
即可求出单调性;(2)分离变量得
恒成立,转化为求
的最大值,然后求导数判断
的单调性即可求出
的最大值,从而求得结果;(3)对
两边取对数,化简变形可得
,由(2)可知
在
上单调递减,结合条件即可证明.
由题意可知,函数
的定义域为:
且
.
(1)当
时,
,
若
,则
; 若
,则
,
所以函数
在区间
单调递增,
单调递减.
(2)若
恒成立,则
恒成立,
又因为
,所以分离变量得
恒成立,
设
,则
,所以
,
当
时,
;当
时,
,
即函数
在
上单调递增,在
上单调递减.
当
时,函数
取最大值,
,所以
.
(3)欲证
,两边取对数,只需证明
,
只需证明
,即只需证明
,
由(2)可知
在
上单调递减,且
,
所以
,命题得证.
科目:高中数学 来源: 题型:
【题目】记抛物线
的焦点为
,点
在抛物线上,
,斜率为
的直线
与抛物线
交于
两点.
(1)求
的最小值;
(2)若
,直线
的斜率都存在,且
;探究:直线
是否过定点,若是,求出定点坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.
![]()
(1)试比较甲、乙两班分别抽取的这10名同学身高的中位数大小;
(2)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高176cm的同学被抽到的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的焦点到短轴的端点的距离为
,离心率为
.
(1)求椭圆
的方程;
(2)过点
的直线
交椭圆
于
两点,过点
作平行于
轴的直线
,交直线
于点
,求证:直线
恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图如图.根据茎叶图,下列描述正确的是( )
![]()
A.甲种树苗的平均高度大于乙种树苗的平均高度,且甲种树苗比乙种树苗长得整齐
B.甲种树苗的平均高度大于乙种树苗的平均高度,但乙种树苗比甲种树苗长得整齐
C.乙种树苗的平均高度大于甲种树苗的平均高度,且乙种树苗比甲种树苗长得整齐
D.乙种树苗的平均高度大于甲种树苗的平均高度,但甲种树苗比乙种树苗长得整齐
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2时,恒有f(x)≤kg(x),求k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com