精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+2mx+2,x∈[-5,5]
(1)当m=-2时,求f(x)的最大值和最小值;
(2)求实数m的取值范围,使y=f(x)在区间[-5,5]上是单调函数;
(3)在(1)的条件下,设g(x)=f(x)+n-5,若函数g(x)在区间[0,4]上有且仅有一个零点,求实数n的取值范围.
分析:(1)先对函数进行配方,得到函数的开口方向和对称轴,开口向上在对称轴处取最小值,离对称轴越远函数值越大,从而求出最大值;
(2)讨论对称轴与区间[-5,5]的位置关系,对称轴小于等于-5,则f(x)在[-5,5]上单调递增,对称轴大于等于5,则f(x)在[-5,5]上单调递减,从而可求出所求;
(3)根据(1)可求出g(x)解析式,然后配方可知对称轴x=2∈[0,4],要使g(x)在[0,4]上有且只有一个零点,则△=0,可求出所求.
解答:解:(1)当m=-2时,f(x)=(x-2)2-2,开口向上,对称轴为x=2,
∴f(x)在[-5,2]上单调递减,在[2,5]上单调递增,
∴f(x)max=f(-5)=47,f(x)min=f(2)=-2;
(2)f(x)=(x+m)2+2-m2,对称轴为x=-m,
当-m≤-5,即m≥5时,f(x)在[-5,5]上单调递增,
当-m≥5,即m≤-5时,f(x)在[-5,5]上单调递减,
∴y=f(x)在区间[-5,5]上是单调函数,则m的范围为(-∞,-5]∪[5,+∞);
(3)由(1)可知g(x)=x2-4x-3+n=(x-2)2-7+n,
∵g(x)在[0,4]上有且只有一个零点,对称轴x=2∈[0,4],
∴△=0即n-7=0,
∴n=7.
∴实数n的取值为7.
点评:本题主要考查了二次函数在闭区间上的最值,以及二次函数的单调性和零点问题,同时考查了分析问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案