设函数f(x)的定义域为R,对任意实数x、y都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=-4.
(1)求证:f(x)为奇函数;
(2)在区间[-9,9]上,求f(x)的最值.
|
(1)证明:令x=y=0,得f(0)=0 令y=-x,得f(0)=f(x)+f(-x),即f(-x)=-f(x) ∴f(x)是奇函数 (2)解:1°,任取实数x1、x2∈[-9,9]且x1<x2,这时,x2-x1>0, f(x1)-f(x2)=f[(x1-x2)+x2]-f(x2)=f(x1-x2)+f(x2)-f(x1)=-f(x2-x1) 因为x>0时,f(x)<0,∴f(x1)-f(x2)>0 ∴f(x)在[-9,9]上是减函数 故f(x)的最大值为f(-9),最小值为f(9). 而f(9)=f(3+3+3)=3f(3)=-12,f(-9)=-f(9)=12. ∴f(x)在区间[-9,9]上的最大值为12,最小值为-12. |
科目:高中数学 来源: 题型:
(09年东城区示范校质检一理)(14分)
设函数f(x)是定义在
上的奇函数,当
时,
(a为实数).
(Ⅰ)求当
时,f(x)的解析式;
(Ⅱ)若
上是增函数,求a的取值范围;
(Ⅲ)是否存在a,使得当
时,f(x)有最大值-6.
查看答案和解析>>
科目:高中数学 来源:2008年普通高等学校招生全国统一考试理科数学(上海卷) 题型:填空题
设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lg x,则满足f(x)>0
的x的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com