精英家教网 > 高中数学 > 题目详情
14、求数列{(-1)n•n}的前2010项的和S2010
分析:由题意知S2010=(-1)1×1+(-1)2×2+…+(-1)2010×2010=(-1)×(1-2)+(-1)×(3-4)+…+(-1)×(2009-2010)
化简分析可得答案.
解答:解:∵(-1)n当n为奇数是=-1,当n为偶数是为1.
∴数列{(-1)n•n}中,S2010=(-1)1×1+(-1)2×2+…+(-1)2010×2010
=(-1)×(1-2)+(-1)×(3-4)+…+(-1)×(2009-2010)
=1+1+…+1(共1005个)
=1005.
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设Sn为数列{an}的前n项和,对任意的n∈N*,都有Sn=(m+1)-man(m为常数,且m>0).
(1)求证:数列{an}是等比数列.
(2)设数列{an}的公比q=f(m),数列{bn}满足b1=2a1,bn=f(bn-1)(n≥2,n∈N*),求数列{bn}的通项公式.
(3)在满足(2)的条件下,求数列{
2n+1bn
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差为d(d>1)的等差数列{an}和公比为q(q>1)的等比数列{bn},
满足集合{a3,a4,a5}∪{b3,b4,b5}={1,2,3,4,5}
(1)求通项an,bn
(2)求数列{an•bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•桂林二模)已知数列{an}满足a1=
1
4
,an=
an-1
(-1)nan-1-2
(n≥2,n∈N)
(Ⅰ)求数列{
1
an
+(-1)n}的通项公式;
(Ⅱ)设bn=
1
an2
(n∈N*),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=
1
2
,an=
an-1
(-1)nan-1-2
(n≥2,n∈N).
(1)试判断数列{
1
an
+(-1)n}是否为等比数列,并说明理由;
(2)设bn=
1
an2
,求数列{bn}的前n项和Sn
(3)设cn=ansin
(2n-1)π
2
,数列{cn}的前n项和为Tn.求证:对任意的n∈N*,Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=12n-n2
(Ⅰ)求数列{an}的通项公式,并证明{an}是等差数列;
(Ⅱ)若cn=12-an,求数列{
1cncn+1
}
的前n项和Tn

查看答案和解析>>

同步练习册答案