以点F1(-1,0),F2(1,0)为焦点的椭圆C经过点(1,
)。
(I)求椭圆C的方程;
(II)过P点分别以
为斜率的直线分别交椭圆C于A,B,M,N,求证:
使得![]()
科目:高中数学 来源: 题型:解答题
已知中心在原点O,焦点在x轴上,离心率为
的椭圆过点![]()
(1)求椭圆的方程;
(2)设不过原点O的直线
与该椭圆交于P,Q两点,满足直线
的斜率依次成等比数列,
求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,直线
与以原点为圆心、椭圆
的短半轴长为半径的圆
相切.![]()
(1)求椭圆
的方程;
(2)如图,
、
、
是椭圆
的顶点,
是椭圆
上除顶点外的任意点,直线
交
轴于点
,直线
交
于点
,设
的斜率为
,
的斜率为
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在坐标原点,
焦点在x轴上,左、右焦眯分别为F1,F2,且|F1F2|=2,点P(1,
)在椭圆C上.
(I)求椭圆C的方程;
(II)过F1的直线l与椭圆C相交于A,B两点,且
的面积为
,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知左焦点为
的椭圆过点
.过点
分别作斜率为
的椭圆的动弦
,设
分别为线段
的中点.
(1)求椭圆的标准方程;
(2)若
为线段
的中点,求
;
(3)若
,求证直线
恒过定点,并求出定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的左焦点为
,右焦点为
.![]()
(Ⅰ)设直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点P,线段
的垂直平分线交
于点M,求点M的轨迹
的方程;
(Ⅱ)设
为坐标原点,取曲线
上不同于
的点
,以
为直径作圆与
相交另外一点
,求该圆的面积最小时点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
+
=1(a>b>0)的焦距为4,且与椭圆x2+
=1有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同的两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com