精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、AD边分别在x轴、y轴的正半轴上,A点与坐标原点重合(如图).将矩形折叠,使A点落在线段DC上.
(I)若折痕所在直线的斜率为k,试求折痕所在直线的方程;
(II)当时,求折痕长的最大值;
(Ⅲ)当-2≤k≤-1时,折痕为线段PQ,设t=k(2|PQ|2-1),试求t的最大值.

【答案】分析:(1)分情况讨论斜率表示直线的方程
(2)表示出线段后,分类讨论求最值
(3)表示线段,用均值不等式求最值
解答:解:(1)①当k=0时,此时A点与D点重合,折痕所在的直线方程
②当k≠0时,将矩形折叠后A点落在线段DC上的点记为G(a,1),
所以A与G关于折痕所在的直线对称,
有kOG•k=-1⇒⇒a=-k
故G点坐标为G(-k,1),
从而折痕所在的直线与OG的交点坐标
(线段OG的中点)为
折痕所在的直线方程,即
由①②得折痕所在的直线方程为:

(2)当k=0时,折痕的长为2;
时,折痕直线交BC于点,交y轴于

∴折痕长度的最大值为 

故折痕长度的最大值为  
(3)当-2≤k≤-1时,折痕直线交DC于,交x轴于


∵-2≤k≤-1
(当且仅当时取“=”号)
∴当时,t取最大值,t的最大值是
点评:本题考察内容比较综合,考察了求直线方程、求函数的最值、均值不等式、数形结合和分类讨论思想,属难题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案