精英家教网 > 高中数学 > 题目详情
对于
(1)函数的“定义域为R”和“值域为R”是否是一回事?分别求出实数a的取值范围;
(2)结合“实数a的取何值时f(x)在[-1,+∞)上有意义”与“实数a的取何值时函数的定义域为(-∞,1)∪(3,+∞)”说明求“有意义”问题与求“定义域”问题的区别.
【答案】分析:(1)记μ=g(x)=(x-a)2+3-a2,定义域是实数,g(x)>0恒成立.求出a的范围;值域为R:值域为R,可得μ至少取遍所有的正实数,求出a的范围即可.
(2)实数a的取何值时f(x)在[-1,+∞)上有意义,命题等价于:μ=g(x)>0对于任意x∈[-1,+∞)恒成立,求出a;
实数a的取何值时函数的定义域为(-∞,1)∪(3,+∞):求出a;“有意义问题”正好转化成“恒成立问题”来处理,
而“定义域问题”刚好转化成“取遍所有问题”来解决.
解答:解:记μ=g(x)=(x-a)2+3-a2,则
(1)不一样;(1分)
定义域为R?g(x)>0恒成立.
得:△=4(a2-3)<0,解得实数a的取值范围为.(4分)
值域为R:值域为R?μ至少取遍所有的正实数,
则△=4(a2-3)≥0,解得实数a的取值范围为.(6分)
(2)实数a的取何值时f(x)在[-1,+∞)上有意义:
命题等价于μ=g(x)>0对于任意x∈[-1,+∞)恒成立,
,解得实数a得取值范围为.(8分)
实数a的取何值时函数的定义域为(-∞,1)∪(3,+∞):
由已知得二次不等式x2-2ax+3>0的解集为(-∞,1)∪(3,+∞)可得1+3=2a,
则a=2.故a的取值范围为{2}.(11分)
区别:“有意义问题”正好转化成“恒成立问题”来处理,
而“定义域问题”刚好转化成“取遍所有问题”来解决
(这里转化成了解集问题,即取遍解集内所有的数值)(12分)
点评:本题考查对数函数的定义域,函数恒成立问题,对数函数的值域与最值,考查逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax-a+1,(a>0且a≠1)恒过定点(3,2),
(1)求实数a;
(2)在(1)的条件下,将函数f(x)的图象向下平移1个单位,再向左平移a个单位后得到函数g(x),设函数g(x)的反函数为h(x),求h(x)的解析式;
(3)对于定义在[1,9]的函数y=h(x),若在其定义域内,不等式[h(x)+2]2≤h(x2)+m+2 恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a2x+a2-22x-1
(x∈R,x≠0)
,其中a为常数,且a<0.
(1)若f(x)是奇函数,求a的取值集合A;
(2)当a=-1时,求f(x)的反函数;
(3)对于问题(1)中的A,当a∈{a|a<0,a∉A}时,不等式x2-10x+9<a(x-4)恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于数学公式
(1)函数的“定义域为R”和“值域为R”是否是一回事?分别求出实数a的取值范围;
(2)结合“实数a的取何值时f(x)在[-1,+∞)上有意义”与“实数a的取何值时函数的定义域为(-∞,1)∪(3,+∞)”说明求“有意义”问题与求“定义域”问题的区别.

查看答案和解析>>

科目:高中数学 来源:安徽省安庆市示范高中09-10学年高一五校协作期中考试 题型:解答题

 对于

   (1)函数的“定义域为R”和“值域为R”是否是一回事?分别求出实数a的取值范围;

   (2)结合“实数a的取何值时上有意义”与“实数a的取何值时函数的定义域为”说明求“有意义”问题与求“定义域”问题的区别.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案