精英家教网 > 高中数学 > 题目详情

设A(x1,y1)、B(x2,y2)两点在抛物线y=2x2上,l是AB的垂直平分线.

(1)当且仅当x1+x2取何值时,直线l经过抛物线的焦点F?证明你的结论.

(2)当直线l的斜率为2时,求l在y轴上截距的取值范围.

答案:
解析:

  解:F∈l|FA|=|FB|A、B两点到抛物线的准线的距离相等,

  ∵抛物线准线y=平行于x轴,y1≥0,y2≥0,

  依题意y1、y2不同时为零,

  ∴上述条件等价于y1=y2x12=x22(x1+x2)(x1-x2)=0.

  ∵x1≠x2,∴上述条件等价于x1+x2=0,即当且仅当x1+x2=0时,l经过抛物线的焦点F.

  (2)设l在y轴上的截距为b,则l的方程y=2x+b,过A、B两点的直线方程为

  由=0.

  ∴x1+x2

  Δ=+8m>0.

  ∴m>.设AB中点N的坐标为(x0,y0),

  则x0(x1+x2)=,y0x0+m=+m.

  ∵N点在l上,

  ∴+m=+b.

  于是b=,即b>

  故直线l在y轴上截距的取值范围是(,+∞).


提示:

本题考查直线、抛物线等基础知识,考查解析几何的基本思想方法和综合解题能力.注意判别式的作用和充要条件的证明,“当且仅当”即指充要条件.本题利用直线与抛物线的位置关系求解.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

A(x1y1),B(4,
9
5
),C(x2y2)
是右焦点为F的椭圆
x2
25
+
y2
9
=1
上三个不同的点,则“|AF|,|BF|,|CF|成等差数列”是“x1+x2=8”的(  )
A、充要条件
B、必要不充分条件
C、充分不必要条件
D、既非充分也非必要

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(x1y1)
b
=(x2y2)
,若|
a
|=2
|
b
|=3
a
b
=-6
,则
x1+y1
x2+y2
=(  )
A、
2
3
B、
3
2
C、-
2
3
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(x1,y1),
b
=(x2,y2)
,定义一种运算:
a
b
=(x1x2,y1y2).已知
p
=(
8
π
,2)
m
=(
1
2
,1)
n
=(
π
4
,-
1
2
)

(1)证明:(
p
m
)⊥
n

(2)点P(x0,y0)在函数g(x)=sinx的图象上运动,点Q(x,y)在函数y=f(x)的图象上运动,且满足
OQ
=
m
OP
+
n
(其中O为坐标原点),求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年莱阳一中学段检测)(14分)

      已知函数 (a>0且a1),其中为常数.如果

h(x)=f(x)+g(x)是增函数,且h(x)的导函数h (x)存在零点.

    (1)求a的值;

    (2)设A(x1、y1)、B(x2、y2)(x1 < x2)是函数y=g(x)的图象上两点, 

(g(x)为g(x)的导函数),证明:x1 < x0 < x2

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省高三上学期期末考试文科数学 题型:解答题

.(本题满分12分)

A(x1y1),B(x2y2),是椭圆+=(ab>0)上的两点,已知向量m=(),n=(),若m·n=0且椭圆的离心率e=,短轴长为2,O为坐标原点.

(Ⅰ)求椭圆的方程;

(Ⅱ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

 

 

查看答案和解析>>

同步练习册答案