【题目】已知椭圆
的右焦点为
,且点
在椭圆
上.
(1)求椭圆
的标准方程;
(2)当点
在椭圆
的图像上运动时,点
在曲线
上运动,求曲线
的轨迹方程,并指出该曲线是什么图形;
(3)过椭圆
上异于其顶点的任意一点
作曲线
的两条切线,切点分别为
不在坐标轴上),若直线
在
轴,
轴上的截距分别为
试问:
是否为定值?若是,求出该定值;若不是,请说明理由.
【答案】(1)
(2)
,曲线
的图形是一个以坐标原点为圆心、
为半径的圆 (3)是定值,![]()
【解析】
(1)由
得
,再把点
坐标代入又得一方程,联立后可解得
得椭圆方程;
(2)设
,用
表示
,把
代入椭圆方程可得曲线
方程,由方程可判断曲线形状;
(3)由(1)知,
设点
,由
坐标可得切线方程,代入
点坐标于两切线方程后观察结论可得直线
方程,求出
,计算
,利用
在椭圆
上可得.
(1)由题意得,
所以![]()
又点
在椭圆
上,所以
解得![]()
所以椭圆
的标准方程为
(2)设
,则
,于是
,
由于点
在椭圆
的图像上,
所以
即![]()
整理得
,
所以曲线
的轨迹方程为![]()
曲线
的图形是一个以坐标原点为圆心,
为半径的圆.
(3)由(1)知,
设点![]()
则直线
的方程为
①
直线
的方程为
②
把点
的坐标代入①②得![]()
所以直线
的方程为
令
得
令
得![]()
所以
又点
在椭圆
上,
所以
即
为定值.
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)已知圆
,圆
,动圆
与圆
外切并且与圆
内切,圆心
的轨迹为曲线
.
(Ⅰ)求
的方程;
(Ⅱ)
是与圆
,圆
都相切的一条直线,
与曲线
交于
,
两点,当圆
的半径最长时,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在实数集
上的偶函数
和奇函数
满足
.
(1)求
与
的解析式;
(2)求证:
在区间
上单调递增;并求
在区间
的反函数;
(3)设
(其中
为常数),若
对于
恒成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
中,
,前
项和为
,且
.
(1)求
,
的值;
(2)证明:数列
是等差数列,并写出其通项公式;
(3)设
(
),试问是否存在正整数
,
(其中
,使得
,
,
成等比数列?若存在,求出所有满足条件的数对
;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是定义在
上的函数,满足
.
(1)证明:2是函数
的周期;
(2)当
时,
,求
在
时的解析式,并写出
在
(
)时的解析式;
(3)对于(2)中的函数
,若关于x的方程
恰好有20个解,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,且点
在椭圆
上.
(1)求椭圆
的标准方程;
(2)当点
在椭圆
的图像上运动时,点
在曲线
上运动,求曲线
的轨迹方程,并指出该曲线是什么图形;
(3)过椭圆
上异于其顶点的任意一点
作曲线
的两条切线,切点分别为
不在坐标轴上),若直线
在
轴,
轴上的截距分别为
试问:
是否为定值?若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两名射击运动员在进行射击训练,已知甲命中10环,9环,8环的概率分别是
,
,
,乙命中10环,9环,8环的概率分别是
,
,
,任意两次射击相互独立.
(1)求甲运动员两次射击命中环数之和恰好为18的概率;
(2)现在甲、乙两人进行射击比赛,每一轮比赛两人各射击1次,环数高于对方为胜,环数低于对方为负,环数相等为平局,规定连续胜利两轮的选手为最终的胜者,比赛结束,求恰好进行3轮射击后比赛结束的概率
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com