【题目】如图,由直三棱柱
和四棱锥
构成的几何体中,
,平面
平面![]()
(I)求证:
;
(II)若M为
中点,求证:
平面
;
(III)在线段BC上(含端点)是否存在点P,使直线DP与平面
所成的角为
?若存在,求
得值,若不存在,说明理由.
![]()
【答案】(1)见解析;(2)见解析;(3)不存在这样的点P.
【解析】分析:(I)由
,根据面面垂直的性质得到
平面
,从而可证明
;(II)由于
,建立空间直角坐标系
,利用
的方向向量与平面
的法向量数量积为零可得
平面
;(III)由(II)可知平面
的法向量
,设
,利用空间向量夹角余弦公式列方程可求得
,从而可得结论.
详解:证明:(I)在直三棱柱
中,
∵
平面
∴
∵平面
平面
,且平面
平面![]()
∴
平面
∴
![]()
(I)在直三棱柱
中,
∵
平面
,∴![]()
又
,
建立如图所示的空间直角坐标系,由已知可得
,
,
,
,
,![]()
设平面
的法向量![]()
∵
∴
令
则![]()
∵
为
的中点,∴![]()
∵
∴
又
平面
,∴
平面
(III)由(II)可知平面
的法向量![]()
设![]()
则![]()
若直线DP与平面
所成的角为
,
则
解得
故不存在这样的点P,使得直线DP与平面
所成的角为![]()
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,过定点
作直线与抛物线
相交于
、
两点.
(1)已知
,若点
是点
关于坐标原点
的对称点,求
面积的最小值;
(2)是否存在垂直于
轴的直线
,使得
被以
为直径的圆截得的弦长恒为定值?若存在,求出
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在D上的函数f(x),若满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.
(1)设
,判断f(x)在
上是否是有界函数.若是,说明理由,并写出f(x)所有上界的值的集合;若不是,也请说明理由.
(2)若函数g(x)=1+2x+a·4x在x∈[0,2]上是以3为上界的有界函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命. 为了研究司机开车时使用手机的情况,交警部门调查了
名机动车司机,得到以下统计:在
名男性司机中,开车时使用手机的有
人,开车时不使用手机的有
人;在
名女性司机中,开车时使用手机的有
人,开车时不使用手机的有
人.
(1)完成下面的
列联表,并判断是否有
的把握认为开车时使用手机与司机的性别有关;
开车时使用手机 | 开车时不使用手机 | 合计 | |
男性司机人数 | |||
女性司机人数 | |||
合计 |
(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为
,若每次抽检的结果都相互独立,求
的分布列和数学期望
.
参考公式与数据:
参考数据:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
参考公式
span>,其中
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年,河北等8省公布了高考改革综合方案将采取“
”模式,即语文、数学、英语必考,然后考生先在物理、历史中选择1门,再在思想政治、地理、化学、生物中选择2门.为了更好进行生涯规划,张明同学对高一一年来的七次考试成绩进行统计分析,其中物理、历史成绩的茎叶图如图所示.
![]()
(1)若张明同学随机选择3门功课,求他选到物理政治两门功课的概率;
(2)试根据茎叶图分析张明同学应在物理和历史中选择哪个学科?并阐述理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
在直角坐标系xOy中,设倾斜角为α的直线l:
(t为参数)与曲线C:
(θ为参数)相交于不同的两点A,B.
(Ⅰ)若α=
,求线段AB中点M的坐标;
(Ⅱ)若|PA|·|PB|=|OP|
,其中P(2,
),求直线l的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com