精英家教网 > 高中数学 > 题目详情
14、(选做题) 如图,圆 O 的割线 PBA 过圆心 O,弦 CD 交 PA 于点F,且△COF∽△PDF,PB=OA=2,则PF=
3
分析:由已知中OA=2,我们可得圆的半径为2,由相交弦定理及三角形相似的性质,我们可以得到AF•BF=OF•PF,结合PB=OA=2,求出BF长,进而即可求出PF的长.
解答:解:∵PB=OA=2,
∴OC=OB=2
由相交弦定理得:DF•CF=AF•BF
又∵△COF∽△PDF,
∴DF•CF=OF•PF
即AF•BF=OF•PF
即(4-BF)•BF=(2-BF)•(2+BF)
解得BF=1
故PF=PB+BF=3
故答案为:3
点评:本题考查的知识点是相交弦定理及相似三角形的性质,其中根据相交弦定理及三角形相似的性质,得到AF•BF=OF•PF,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网A.(不等式选做题)
函数f(x)=x2-x-a2+a+1对于任一实数x,均有f(x)≥0.则实数a满足的条件是
 

B.(几何证明选做题)
如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2
3
,AB=BC=4,则AC的长为
 

C.(坐标系与参数方程选做题)
在极坐标系中,曲线ρ=4cos(θ-
π
3
)
上任意两点间的距离的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网(几何证明选讲选选做题)如图,圆的两条弦AC、BD相交于P,弧AB、BC、CD、DA的度数分别为60°、105°、90°、105°,则
PAPC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(几何证明选讲选做题)如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2
7
,AB=3.则BD的长为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题(请考生在以下三个小题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(选修4-4坐标系与参数方程)若M,N分别是曲线ρ=2cosθ和ρsin(θ-
π
4
)=
2
2
上的动点,则M,N两点间的距离的最小值是
2
-1
2
-1

B.(选修4-5 不等式选讲)若不等式|x+
1
x
|>|a-2|+1
对于一切非零实数x均成立,则实数a的取值范围为
1<a<3
1<a<3

C.(选修4-1 几何证明选讲)(几何证明选做题)如图,圆O的割线PBA过圆心O,弦CD交AB于点E,且△COE~△PDE,PB=OA=2,则PE的长等于
3
3

查看答案和解析>>

同步练习册答案