在边长为
的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,重合后的点记为
,构成一个三棱锥.
![]()
(1)请判断
与平面
的位置关系,并给出证明;
(2)证明
平面
;
(3)求二面角
的余弦值.
(1)平行;(2)证明
和
即可;(3)![]()
【解析】
试题分析:本题考查空间想象能力,在折叠过程中,找到不变的量是求解的关键.(1)由中位线定理,可证明
平行
;(2)证明
和
即可;(3)注意到三角形MEF、BEF都是等腰三角形,因此,取EF的中点即可求出二面角.
试题解析:(1)
平行平面![]()
证明:由题意可知点
在折叠前后都分别是
的中点(折叠后
两点重合)
所以
平行
,
因为
,所以
平行平面
.
(2)证明:由题意可知
的关系在折叠前后都没有改变.
因为在折叠前
,由于折叠后
,点
,所以![]()
因为
,所以
平面
.
(3)解:![]()
![]()
所以
是二面角
的平面角.
因为
⊥
,所以
.
在
中,
,由于
,所以
,
于是
.
所以,二面角
的余弦值为
.
考点:1、线面平行;2、线面垂直的判定;3、二面角的概念及其求法.
科目:高中数学 来源:2013-2014学年福建四地六校高三上学期第三次月考文科数学试卷(解析版) 题型:解答题
在边长为
的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合于B,构成一个三棱锥(如图所示).
![]()
![]()
(Ⅰ)在三棱锥上标注出
、
点,并判别MN与平面AEF的位置关系,并给出证明;
(Ⅱ)
是线段
上一点,且
,问是否存在点
使得
,若存在,求出
的值;若不存在,请说明理由;
(Ⅲ)求多面体E-AFNM的体积.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省佛山市高三5月临考集训文科数学试卷(解析版) 题型:解答题
在边长为
的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥.
![]()
![]()
(1)判别MN与平面AEF的位置关系,并给出证明;
(2)证明AB⊥平面BEF;
(3)求多面体E-AFNM的体积.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三5月模拟考试文科数学试卷(解析版) 题型:解答题
(本小题满分12分)
在边长为
的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合于B,构成一个三棱锥(如图所示).
![]()
(Ⅰ)在三棱锥上标注出
、
点,并判别MN与平面AEF的位置关系,并给出证明;
(Ⅱ)
是线段
上一点,且
, 问是否存在点
使得
,若存在,求出
的值;若不存在,请说明理由;
(Ⅲ)求多面体E-AFNM的体积.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省菏泽市高三5月高考冲刺题文科数学试卷(解析版) 题型:解答题
在边长为
的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥.
(I)判别MN与平面AEF的位置关系,并给出证明;
(II)求多面体E-AFMN的体积.
![]()
【解析】第一问因翻折后B、C、D重合(如下图),所以MN应是
的一条中位线,则利用线线平行得到线面平行。
第二问因为
平面BEF,……………8分
且
,
∴
,又
∴![]()
(1)因翻折后B、C、D重合(如图),
![]()
所以MN应是
的一条中位线,………………3分
则
.………6分
(2)因为
平面BEF,……………8分
且
,
∴
,………………………………………10分
又
∴![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com