精英家教网 > 高中数学 > 题目详情
已知已知函数f(x)的图象与函数g(x)=ax的图象关于直线y=x对称.
(1)求函数f(x)的解析式;
(2)当a>1时,若f(x)<f(2),试确定实数x的取值范围.
分析:(1)根据函数f(x)的图象与函数g(x)=ax的图象关于直线y=x对称可知f(x)是y=ax的反函数,由此可得f(x)的解析式;
(2)由(1)得,a>1时,函数f(x)=logax在(0,+∞)上是增函数,利用其单调性求解不等式f(x)<f(2)即得.
解答:解:(1)依题意可知函数f(x)与g(x)互为反函数,
故所求函数解析式为f(x)=logax.…(5分)
(2)∵a>1,f(x)<f(2),
∴logax<loga2
∴0<x<2…((10分)
点评:本题属于基础性题,解题思路清晰,方向明确,注意抓住函数y=ax的图象与函数y=f(x)的图象关于直线y=x对称这一特点,确认f(x)是原函数的反函数非常重要,是本题解决的突破口.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,且对于一切实数x满足f(x+2)=f(2-x),f(x+7)=f(7-x)
(1)若f(5)=9,求:f(-5);
(2)已知x∈[2,7]时,f(x)=(x-2)2,求当x∈[16,20]时,函数g(x)=2x-f(x)的表达式,并求出g(x)的最大值和最小值;
(3)若f(x)=0的一根是0,记f(x)=0在区间[-1000,1000]上的根数为N,求N的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=px3+qx2+2在x=2处取得极小值-2.
(1)设T(x)=f(x)+m,若T(x)有三个零点,求实数m的范围;
(2)是否存在实数k,当a+b≤2时,使得函数g(x)=
13
f′(x)+k
在定义域[a,b]上值域为[a,b](a≠b),若存在,求k的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案