精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin2xcosφ+cos2xsinφ,(x∈R),(z∈R)其中φ为实数,且f(x)≤f(
9
)对任意实数R恒成立,记p=f(
3
),q=f(
6
),r=f(
6
),则p、q、r的大小关系是(  )
A、r<p<q
B、q<r<p
C、p<q<r
D、q<p<r
分析:根据两角和的正弦公式化简得f(x)=sin(2x+φ),结合题意可得f(
9
)=sin(
9
+φ)=1达到f(x)的最大值,从而算出φ=
π
18
,可得f(x)=sin(2x+
π
18
).由此利用三角函数的诱导公式与正弦函数的单调性加以计算,即可得出p、q、r的大小关系.
解答:解:由题意,得f(x)=sin2xcosφ+cos2xsinφ=sin(2x+φ),
∵f(x)≤f(
9
)对任意实数R恒成立,
∴f(
9
)是函数f(x)的最大值,即f(
9
)=sin(2×
9
+φ)=1,
可得
9
+φ=
π
2
+2kπ(k∈Z),取k=0得φ=
π
18

∴f(x)=sin(2x+
π
18
),
由此可得p=f(
3
)=sin
25π
18
,q=f(
6
)=sin
31π
18
,r=f(
6
)=sin
43π
18

∵sin
25π
18
=sin(π+
18
)=-sin
18
,sin
31π
18
=sin(π+
13π
18
)=-sin
13π
18
=-sin
18

sin
43π
18
=sin(2π+
18
)=sin
18

∴sin
25π
18
<sin
31π
18
<0<sin
43π
18
,即p<q<r.
故选:C
点评:本题已知正弦型三角函数的最大值对应的x值,比较几个函数值的大小关系.着重考查了三角函数的诱导公式、正弦函数的图象与性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax+bsinx,当x=
π
3
时,取得极小值
π
3
-
3

(1)求a,b的值;
(2)对任意x1x2∈[-
π
3
π
3
]
,不等式f(x1)-f(x2)≤m恒成立,试求实数m的取值范围;
(3)设直线l:y=g(x),曲线S:y=F(x),若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有g(x)≥F(x),则称直线l与曲线S的“上夹线”.观察下图:

根据上图,试推测曲线S:y=mx-nsinx(n>0)的“上夹线”的方程,并作适当的说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-blnx在(1,2]是增函数,g(x)=x-b
x
在(0,1)为减函数.
(1)求b的值;
(2)设函数φ(x)=2ax-
1
x2
是区间(0,1]上的增函数,且对于(0,1]内的任意两个变量s、t,f(s)≥?(t)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos( 2x+
π
3
)+sin2x.
(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的对边分别为a、b、c,满足2
AC
CB
=
2
ab,c=2
2
,f(A)=
1
2
-
3
4
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知矩阵A=
a2
1b
有一个属于特征值1的特征向量
α
=
2
-1

①求矩阵A;
②已知矩阵B=
1-1
01
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)已知在直角坐标系xOy中,直线l的参数方程为
x=t-3
y=
3
 t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的极坐标方程为ρ2-4ρco sθ+3=0.
①求直线l普通方程和曲线C的直角坐标方程;
②设点P是曲线C上的一个动点,求它到直线l的距离的取值范围.
(3)已知函数f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若关于x的不等式f(x)≥a2-a在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
2x
+xlnx
,g(x)=x3-x2-x-1.
(1)如果存在x,x∈[0,2],使得g(x)-g(x)≥M,求满足该不等式的最大整数M;
(2)如果对任意的s,t∈[
1
3
,2],都有f(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案