精英家教网 > 高中数学 > 题目详情

已知数列的首项为(1)若,求证:数列是等比数列;(2)若,求数列的前项和.

(Ⅰ)  略  (Ⅱ)   


解析:

(1)证明:由题意,

  所以 即数列是等比数列。

(2)而,由上可知  于是

所以根据“错位相减法”计算:

于是

两式相减得: 所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列的首项为a1=2,前n项和为Sn,且对任意的n∈N*,当n≥2时,an总是3Sn-4与2-
5
2
Sn-1
的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(n+1)an,Tn是数列{bn}的前n项和,n∈N*,求Tn
(Ⅲ)设cn=
3an
4•2n-3n-1an
,Pn是数列{cn}的前项和,n∈N*,试证明:Pn
3
2

查看答案和解析>>

科目:高中数学 来源:2006年浙江省杭州市高三第二次模拟数学(文)卷 题型:解答题

(本小题满分14分)
已知数列{}是首项为等于1且公比不等于1的等比数列,是其前项的和,成等差数列.
(1) 求和 ;
(2) 证明 12成等比数列

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北大附中高三2月统练理科数学 题型:解答题

定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称为“三角形”数列.对于“三角形”数列,如果函数使得仍为一个“三角形”数列,则称是数列的“保三角形函数”,.

(Ⅰ)已知是首项为2,公差为1的等差数列,若是数列的“保三角形函数”,求k的取值范围;

(Ⅱ)已知数列的首项为2010,是数列的前n项和,且满足,证明是“三角形”数列;

(Ⅲ)根据“保三角形函数”的定义,对函数,和数列1,,()提出一个正确的命题,并说明理由.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年重庆市高三第二次月考理科数学卷 题型:解答题

(本小题满分12分)已知数列的首项为,前项和为,且

(1)求证:数列成等比数列;

(2)令,求函数在点处的导数

 

查看答案和解析>>

同步练习册答案