精英家教网 > 高中数学 > 题目详情
(2013•东至县一模)设函数f(x)=a2x2(a>0).
(1)将函数y=f(x)图象向右平移一个单位即可得到函数y=φ(x)的图象,写出y=φ(x)的解析式及值域;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围.
分析:(1)由图象的平移可知y=φ(x)的解析式;
(2)解法一不等式(x-1)2>f(x)的解集中的整数恰有3个?(1-a2)x2-2x+1>0恰有三个整数解,故
h(-2)>0
h(-3)≤0
解得
4
3
≤a≤
3
2

解法二:(1-a2)x2-2x+1>0恰有三个整数解,故1-a2<0,即a>1,可得-3≤
1
1-a
<-2
,解得
4
3
≤a≤
3
2
解答:解:(1)∵函数f(x)=a2x2(a>0),将函数y=f(x)图象向右平移一个单位可得到函数y=φ(x)的图象,
∴y=φ(x)的解析式为:y=φ(x)=a2(x-1)2,由完全平方非负的特点可知其值域为:[0,+∞)
(2)解法一:不等式(x-1)2>f(x)的解集中的整数恰有3个?(1-a2)x2-2x+1>0恰有三个整数解,
故1-a2<0.令h(x)=(1-a2)x2-2x+1,由h(0)=1>0且h(1)=-a2<0(a>0)
所以函数h(x)=(1-a2)x2-2x+1的一个零点在区间(0,1),另一个零点一定在区间[-3,-2)
h(-2)>0
h(-3)≤0
解得
4
3
≤a≤
3
2

解法二:(1-a2)x2-2x+1>0恰有三个整数解,故1-a2<0,即a>1
(1-a2)x2-2x+1=[(1-a)x-1][(1+a)-1]>0
所以
1
1-a
<x<
1
1+a
,又因为0<
1
1+a
<1

所以-3≤
1
1-a
<-2
,解得
4
3
≤a≤
3
2
点评:本题为函数的图象变换,涉及不等式的解法和属性结合的思想,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•东至县一模)函数y=
1-(
1
2
)
x
的定义域是
[0,+∞)
[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东至县一模)已知tanx=
1
3
,则cos2x=
4
5
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东至县一模)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=
3
asinC-ccosA

(1)求角A;
(2)若a=2,△ABC的面积为
3
,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东至县一模)若直角坐标平面内M、N两点满足:
①点M、N都在函数f(x)的图象上;
②点M、N关于原点对称,则称这两点M、N是函数f(x)的一对“靓点”.
已知函数f(x)=
3x,x≤0
x-3,x>0
则函数f(x)有
对“靓点”.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东至县一模)若函数f(x)=a(x+1)p(x-1)q(a>0)在区间[-2,1]上的图象如图所示,则p,q的值可能是(  )

查看答案和解析>>

同步练习册答案