【题目】已知曲线![]()
(1)若
,过点
的直线
交曲线
于
两点,且
,求直线
的方程;
(2)若曲线
表示圆时,已知圆
与圆
交于
两点,若弦
所在的直线方程为
,
为圆
的直径,且圆
过原点,求实数
的值.
【答案】(1)
或
(即
) ;(2)
.
【解析】试题分析:(1)由已知条件推导出圆心C(1,2),2为半径,由此利用点到直线的距离公式结合已知条件能求出m=1.
(2)求出圆
的方程,两圆相减得公共弦方程
,即得m.
试题解析:
(1) 当
时, 曲线C是以
为圆心,2为半径的圆,
若直线
的斜率不存在,显然不符,
故可直线
为:
,即
.
由题意知,圆心
到直线
的距离等于
,
即: ![]()
解得
或
.故的方程
或
(即
)
(2)由曲线C表示圆
,即
,
所以圆心C(1,2),半径
,则必有
.
设过圆心
且与
垂直的直线为:
,解得
;
,所以,圆心![]()
又因为圆
过原点,则
;
所以圆
的方程为
,整理得:
;
因为
为两圆的公共弦,两圆方程相减得:
;
所以
为直线
的方程;又因为
;所以
.
科目:高中数学 来源: 题型:
【题目】为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了了解这次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,请你根据尚未完成的频率分布表和频率分布直方图,回答下面问题:
![]()
(1)结合图表信息,补全频率分布直方图;
(2)对于参加这次竞赛的900名学生,估计成绩不低于76分的约有多少人.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
(
)的两个焦点为
,
,离心率为
,点
,
在椭圆上,
在线段
上,且
的周长等于
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)过圆
:
上任意一点
作椭圆
的两条切线
和
与圆
交于点
,
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《续古摘奇算法》(杨辉)一书中有关于三阶幻方的问题:将1,2,3,4,5,6,7,8,9分别填入
的方格中,使得每一行,每一列及对角线上的三个数的和都相等,我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是( )
8 | 3 | 4 |
1 | 5 | 9 |
6 | 7 | 2 |
A. 9 B. 8 C. 6 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,
是焦点,直线
是经过点
的任意直线.
(Ⅰ)若直线
与抛物线交于
、
两点,且
(
是坐标原点,
是垂足),求动点
的轨迹方程;
(Ⅱ)若
、
两点在抛物线
上,且满足
,求证:直线
必过定点,并求出定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中
平面
,且
,
.
![]()
(1)求证:
;
(2)在线段
上,是否存在一点
,使得二面角
的大小为45°,如果存在,求
与平面
所成角的正弦值,如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分为14分)已知定义域为R的函数
是奇函数.
(1)求a,b的值;
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某冷饮店只出售一种饮品,该饮品每一杯的成本价为3元,售价为8元,每天售出的第20杯及之后的饮品半价出售.该店统计了近10天的饮品销量,如图所示:设
为每天饮品的销量,
为该店每天的利润.
![]()
(1)求
关于
的表达式;
(2)从日利润不少于96元的几天里任选2天,求选出的这2天日利润都是97元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆
与圆
:
,圆![]()
都相内切,即圆心
的轨迹为曲线
;设
为曲线
上的一个不在
轴上的动点,
为坐标原点,过点
作
的平行线交曲线
于
,
两个不同的点.
(1)求曲线
的方程;
(2)试探究
和
的比值能否为一个常数?若能,求出这个常数;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com