【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差 | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数 | 22 | 25 | 29 | 26 | 16 | 12 |
(1)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出
关于
的线性回归方程
;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
(参考数据
,
)
(参考公式:
,
)
科目:高中数学 来源: 题型:
【题目】如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,
,M是线段EF的中点,二面角
的大小为60°.
![]()
(1)求证:
平面BDE;
(2)试在线段AC上找一点P,使得PF与CD所成的角是60°.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设直线
:
,
:
.点
的坐标为
.过点
的直线
的斜率为
,且与
,
分别交于点
,
(
,
的纵坐标均为正数).
![]()
(1)求实数
的取值范围;
(2)设
,求
面积的最小值;
(3)是否存在实数
,使得
的值与
无关?若存在,求出所有这样的实数
;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点
务极点,
轴正半轴为极轴建立极坐标系,曲线
,
(1)求曲线
,
的直角坐标方程;
(2)曲线
和
的交点为
,
,求以
为直径的圆与
轴的交点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某乐园按时段收费,收费标准为:每玩一次不超过
小时收费10元,超过
小时的部分每小时收费
元(不足
小时的部分按
小时计算).现有甲、乙二人参与但都不超过
小时,甲、乙二人在每个时段离场是等可能的。为吸引顾客,每个顾客可以参加一次抽奖活动。
(1) 用
表示甲乙玩都不超过
小时的付费情况,求甲、乙二人付费之和为44元的概率;
(2)抽奖活动的规则是:顾客通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数
,并按如右所示的程序框图执行.若电脑显示“中奖”,则该顾客中奖;若电脑显示“谢谢”,则不中奖,求顾客中奖的概率.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是实系数一元二次方程
的虚根,记它在直角坐标平面上的对应点位
.
(1)若
在直线
上,求证:
在圆
:
上;
(2)给定圆
,则存在唯一的线段
满足:
①若
在圆
上,则
在线段
上;
②若
是线段
上一点(非端点),则
在圆
上,写出线段
的表达式,并说明理由;
(3)由(2)知线段
与圆
之间确定了一种对应关系,通过这种对应关系的研究,填写表一(表中
是(1)中圆
的对应线段).
表一:
线段 |
|
| |
| |
线段 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com