如图所示,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点。![]()
(Ⅰ)求证:平面FGH⊥平面AEB;
(Ⅱ)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.
(Ⅰ)详见解析;(Ⅱ)在线段PC上存在一点M,使PB⊥平面EFM,PM=
.
解析试题分析:(Ⅰ)求证:平面
平面
,证明面面垂直,先证线面垂直,即证一个平面过另一个平面的垂线,注意到F,H分别为线段PB,PC的中点,所以FH∥BC,只要CB⊥平面
,则FH⊥平面
,由已知EA⊥平面ABCD,则EA⊥CB,而四边形ABCD是正方形,CB⊥AB,从而可得CB⊥平面
,即可证出平面
平面
;(Ⅱ)这是一个探索性命题,一边假设存在,作为条件,进行推理即可,有已知条件,先判断EF⊥PB(因为若EF不垂直PB,则点
就不存在),若PB⊥平面EFM,只需使PB⊥FM,注意到三角形
是一个直角三角形,这样△PFM∽△PCB,利用线段比例关系,可得PM=
,从得结论.
试题解析:(Ⅰ)因为EA⊥平面ABCD,所以EA⊥CB.
又因为CB⊥AB,AB∩AE=A,所以CB⊥平面ABE. 3分
由已知F,H分别为线段PB,PC的中点,所以FH∥BC,则FH⊥平面ABE. 5分
而FH?平面FGH,所以平面FGH⊥平面ABE. 6分
(Ⅱ)在线段PC上存在一点M,使PB⊥平面EFM.证明如下:在直角三角形AEB中,因为AE=1,AB=2,所以BE=
,
在直角梯形EADP中,因为AE=1,AD=PD=2,所以PE=
,所以PE=BE.
又因为F为PB的中点,所以EF⊥PB...8分
要使PB⊥平面EFM,只需使PB⊥FM. ..9分
因为PD⊥平面ABCD,所以PD⊥CB,又因为CB⊥CD,PD∩CD=D,
所以CB⊥平面PCD,而PC?平面PCD,所以CB⊥PC.
若PB⊥FM,则△PFM∽△PCB,可得
, 11分
由已知可求得PB=
,PF=
,PC=
,所以PM=
..12分
考点:面面垂直的判定,线面垂直的性质.
科目:高中数学 来源: 题型:解答题
如图,在四棱锥
中,底面
是边长为2的正方形,侧面
底面
,且
为等腰直角三角形,
,
、
分别为
、
的中点.![]()
(1)求证:
//平面
;
(2)若线段
中点为
,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在空间直角坐标系O-xyz中,正四棱锥P-ABCD的侧棱长与底边长都为
,点M,N分别在PA,BD上,且
.![]()
(1)求证:MN⊥AD;
(2)求MN与平面PAD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知
、
、
为不在同一直线上的三点,且
,
.![]()
(1)求证:平面
//平面
;
(2)若
平面
,且
,
,
,求证:
平面
;
(3)在(2)的条件下,设点
为
上的动点,求当
取得最小值时
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.![]()
(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求棱锥E-DFC的体积;
(3)在线段BC上是否存在一点P,使AP⊥DE?如果存在,求出
的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)如图,在四面体A?BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中点.![]()
(1)证明:平面ABC
平面ADC;
(2)若ÐBDC=60°,求二面角C?BM?D的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com