精英家教网 > 高中数学 > 题目详情
为方程的根(),则_______

解析:由题意,.由此可得

 以及 .

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•绵阳二模)已知关于x的一元二次方程x2-2x+b-a+3=0,其中a、b为常数,点(a,b)是区域Ω:
0≤a≤4
0≤b≤4
内的随机点.设该方程的两个实数根分别为x1、x2则x1、x2满足0≤x1≤1≤x2的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年湖北黄冈联考理)(14分)设M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数的导数满足

(1)判断函数是否是集合M中的元素,并说明理由;

(2)若集合M中的元素具有下面的性质:“若的定义域为D,则对于任意,都存在,使得等式成立”

试用这一性质证明:方程只有一个实数根;

(3)设是方程的实数根,求证:对于定义域中的任意的,当时,

查看答案和解析>>

科目:高中数学 来源:2011年湖南省长沙市高二上学期期末检测数学文卷 题型:解答题

(本小题满分13分)

设M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数的导数满足”.

(1)判断函数是否是集合M中的元素,并说明理由;

(2)若集合M中的元素具有下面的性质:“若的定义域为D,则对于任意,都存在,使得等式成立”,试用这一性质证明:方程只有一个实数根;

(3)设是方程的实数根,求证:对于定义域中的任意的,当时,

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省高三第二学期第一次模拟考试理科数学 题型:解答题

 

(本小题满分14分)

已知函数,当时,取得极小值.

(1)求的值;

(2)设直线,曲线.若直线与曲线同时满足下列两个条件:

①直线与曲线相切且至少有两个切点;

②对任意都有.则称直线为曲线的“上夹线”.

试证明:直线是曲线的“上夹线”.

(3)记,设是方程的实数根,若对于定义域中任意的,当,且时,问是否存在一个最小的正整数,使得恒成立,若存在请求出的值;若不存在请说明理由.

 

查看答案和解析>>

同步练习册答案