精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x3+3bx2+cx+bc-2b3(b,c∈R),函数g(x)=m[f(x)]2+p(其中m.p∈R,且mp<0),给出下列结论:
①函数f(x)不可能是定义域上的单调函数;
②函数f(x)的图象关于点(-b,0)对称;
③函数g(x)=可能不存在零点(注:使关于x的方程g(x)=0的实数x叫做函数g(x)的零点);
④关于x的方程g(x)=0的解集不可能为{-1,1,4,5}.
其中正确结论的序号为________(写出所有正确结论的序号).

②④
分析:①求导函数可得:f′(x)=3x2+6bx+c,当36b2-12c≤0时,f′(x)≥0,函数为增函数;
②验证f(-x-2b)=-f(x)即可;
③函数g(x)=m[f(x)]2+p,∴g(x)=0时,[f(x)]2=-,此方程一定有解;
④关于x的方程g(x)=0的解集,即f(x)=0的解集,根据函数f(x)的图象关于点(-b,0)对称,可得结论
解答:①求导函数可得:f′(x)=3x2+6bx+c,当36b2-12c≤0时,f′(x)≥0,函数为增函数,故①不正确;
②f(-x-2b)=(-x-2b)3+3b(-x-2b)2+c(-x-2b)+bc-2b3=-x3-3bx2-cx-bc+2b3=-f(x),∴函数f(x)的图象关于点(-b,0)对称;
③函数g(x)=m[f(x)]2+p,∴g(x)=0时,[f(x)]2=-,此方程一定有解,∴函数g(x)=0存在零点,故③不正确;
④关于x的方程g(x)=0的解集,即f(x)=0的解集,根据函数f(x)的图象关于点(-b,0)对称,可得解集不可能为{-1,1,4,5},故④正确
故答案为:②④
点评:本题考查命题的真假判断,考查函数的性质,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案